GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Society of Hematology  (20)
  • 1
    In: Blood, American Society of Hematology, Vol. 96, No. 1 ( 2000-07-01), p. 203-209
    Kurzfassung: The proteins encoded by RAG1 and RAG2 can initiate gene recombination by site-specific cleavage of DNA in immunoglobulin and T-cell receptor (TCR) loci. We identified a new homozygous RAG1 gene mutation (631delT) that leads to a premature stop codon in the 5′ part of the RAG1 gene. The patient carrying this 631delT RAG1 gene mutation died at the age of 5 weeks from an Omenn syndrome-like T+/B−severe combined immunodeficiency disease. The high number of blood T-lymphocytes (55 × 106/mL) showed an almost polyclonal TCR gene rearrangement repertoire not of maternal origin. In contrast, B-lymphocytes and immunoglobulin gene rearrangements were hardly detectable. We showed that the 631delT RAG1 gene can give rise to an N-terminal truncated RAG1 protein, using an internal AUG codon as the translation start site. Consistent with the V(D)J recombination in T cells, this N-terminal truncated RAG1 protein was active in a plasmid V(D)J recombination assay. Apparently, the N-terminal truncated RAG1 protein can recombine TCR genes but not immunoglobulin genes. We conclude that the N-terminus of the RAG1 protein is specifically involved in immunoglobulin gene rearrangements.
    Materialart: Online-Ressource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2000
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Blood, American Society of Hematology, Vol. 96, No. 1 ( 2000-07-01), p. 203-209
    Kurzfassung: The proteins encoded by RAG1 and RAG2 can initiate gene recombination by site-specific cleavage of DNA in immunoglobulin and T-cell receptor (TCR) loci. We identified a new homozygous RAG1 gene mutation (631delT) that leads to a premature stop codon in the 5′ part of the RAG1 gene. The patient carrying this 631delT RAG1 gene mutation died at the age of 5 weeks from an Omenn syndrome-like T+/B−severe combined immunodeficiency disease. The high number of blood T-lymphocytes (55 × 106/mL) showed an almost polyclonal TCR gene rearrangement repertoire not of maternal origin. In contrast, B-lymphocytes and immunoglobulin gene rearrangements were hardly detectable. We showed that the 631delT RAG1 gene can give rise to an N-terminal truncated RAG1 protein, using an internal AUG codon as the translation start site. Consistent with the V(D)J recombination in T cells, this N-terminal truncated RAG1 protein was active in a plasmid V(D)J recombination assay. Apparently, the N-terminal truncated RAG1 protein can recombine TCR genes but not immunoglobulin genes. We conclude that the N-terminus of the RAG1 protein is specifically involved in immunoglobulin gene rearrangements.
    Materialart: Online-Ressource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2000
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 3359-3359
    Kurzfassung: Introduction Due to bone fragility, children with acute lymphoblastic leukemia (ALL) have a 6-fold greater fracture risk during therapy compared to peers. Osteoporotic fractures are a concern, as they lead to adverse health outcomes including pain, loss of height due to vertebral deformity, and (transient) disability. In previous studies, lower lumbar spine bone mineral density (LS BMD) at ALL diagnosis was found to be prognostic for the occurrence of future fractures. However, routinely performing dual-energy X-ray absorptiometry (DXA) in each newly diagnosed child is not universally feasible. The aim of this study is to develop and validate an easy to use clinical risk prediction model for low lumbar spine bone mineral density (LS BMD Z-score ≤-2.0) at diagnosis, as an important indicator for fracture risk and further treatment-related BMD aggravation. Methods Children treated for ALL according to the Dutch Childhood Oncology Group (DCOG-ALL9; model development) protocol (n=249; median age: 7.6 years [range: 4.0-16.6 years]) and children from the Canadian STeroid-Associated Osteoporosis in the Pediatric Population (STOPP; model validation) cohort (n=99; median age: 7.3 years [range: 4.0-16.6 years] ) were included in this study. Multivariable logistic regression analyses were used to develop the prediction model for low LS BMD at diagnosis, defined as a Z-score ≤-2.0 (evaluated with DXA). Candidate predictors included sex, age, height and weight Z-scores at diagnosis of ALL. The receiver operating characteristic area under the curve (AUC) was assessed for model performance. To confirm the association between low LS BMD at diagnosis and bone fragility during and shortly following ALL therapy, we performed multivariable logistic regression analyses. The dependent variables were: one or more symptomatic fractures from ALL diagnosis to 12 months following treatment cessation and low LS BMD at cessation of treatment. In addition, because of homogeneity in the intended glucocorticoid doses, we combined data from the DCOG-ALL9 and STOPP cohorts and performed multivariable pooled cohort analyses (meta-analysis). Potential associations between the six-month cumulative glucocorticoid dose and fractures that occurred in the first year of therapy, were explored. Furthermore, we assessed potential associations between the cumulative glucocorticoid dose at cessation of therapy, and the endpoints 'low LS BMD at therapy cessation' and 'fractures that occurred during treatment and within 12 months following treatment cessation'. Results The prediction model for low LS BMD at diagnosis included weight Z-scores (β = -0.70) and age (β = -0.10) at diagnosis. This model had an AUC of 0.71 (0.63 to 0.78) in the DCOG-ALL9 cohort, and resulted in correct identification of 71% of patients with low LS BMD at ALL diagnosis. Validation on the STOPP cohort showed an AUC of 0.74 (95% CI = 0.63 to 0.84). To calculate the probability of low LS BMD at ALL diagnosis for an individual patient, an online calculator is available at http://lsbmd-risk-calculator.azurewebsites.net/ We confirmed that low LS BMD at diagnosis is associated with LS BMD at treatment cessation (OR = 5.9; 95% CI = 3.2 to 10.9) and with symptomatic fractures (OR = 1.7; 95% CI = 1.3 to 2.4) that occurred from diagnosis until 12 months following treatment cessation. In pooled meta-analysis, lower LS BMD at diagnosis (OR = 1.6, 95% CI = 1.1 to 2.4) and six-month cumulative glucocorticoid dose (OR = 1.9, 95% CI = 1.1 to 3.3, for every gram increase) were associated with symptomatic fractures that occurred in the first year of therapy. Higher cumulative glucocorticoid dose at cessation of therapy (OR = 1.5, 95% CI = 1.2 to 2.0, for every gram increase), lower LS BMD Z-scores at diagnosis (OR = 7.9, 95% CI = 4.8 to 13.1) and higher age at diagnosis (OR = 1.6, 95% CI = 1.4 to 1.8), were associated with low LS BMD at cessation of therapy. Conclusion We developed and successfully validated a risk prediction model for low LSBMD at diagnosis in children aged 4-18 years with ALL. This is important because low LS BMD at diagnosis was strongly associated with bone fragility and fractures during and shortly following treatment for ALL. Our easy to use prediction model, can facilitate awareness and early identification of bone fragility in individual pediatric ALL patients, without performing DXA examination. Disclosures No relevant conflicts of interest to declare.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2021
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 4087-4087
    Kurzfassung: Background Despite significant improvements in the outcome of children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL), therapeutic strategies for high risk and relapsed patients are limited and cause severe side effects. Reliable risk assessment and new therapeutic targets with high specificity are therefore warranted. The RAS pathway is the most frequently mutated pathway in cancer, and the RAF-MEK-ERK kinase axis is crucial for mediating the oncogenic effects of RAS. We and others have previously shown that in pediatric BCP-ALL, RAS pathway mutations can be retrospectively linked to relapse and chemotherapy resistance. However, data on the frequency of (sub-)clonal mutations at diagnosis and hence information about the prognostic relevance at initial diagnosis is lacking. Aim Guide therapy adaptation in pediatric BCP-ALL by evaluating the prognostic relevance of RAS pathway mutations and investigating the sensitivity to MEK inhibition. Methods We performed targeted next-generation sequencing of mutational hotspots in 13 RAS pathway genes to determine the frequency and clonality of RAS pathway mutations in a large, clinically and biologically characterized cohort of BCP-ALL patients. Initial diagnosis samples of 461 patients and 19 matched diagnosis-relapse sets were included. Mutations were considered clonal at ≥25% variant allele frequency, and high coverage allowed detection of subclones with down to 1% variant allele frequency. Clinical outcome was evaluated in 244 patients treated according to a contemporary, minimal residual disease (MRD)-based protocol (DCOG ALL10). The evolution of RAS pathway mutations was studied in 19 matched sets from diagnosis and relapse. Ex vivo sensitivity of RAS pathway mutated cells towards chemotherapeutic agents and trametinib was evaluated in an MTT-based cytotoxicity assay. Results Variants in RAS pathway genes were observed in 44% of initial diagnosis pediatric BCP-ALL cases, mostly affecting NRAS, KRAS, PTPN11, and FLT3. Clonal and subclonal mutations were found in 24% and 20% of patients, respectively. The mutation frequency was highest in high hyperdiploid, infant t(4;11)-positive, BCR-ABL1-like, and B-other cases (50-70%), whereas mutations were rare in ETV6-RUNX1-positive (27%), TCF3-PBX1-positive (8%) and BCR-ABL1-positive cases (4%). In matched diagnosis-relapse sets, clonal mutations at diagnosis were preserved at relapse, whereas the kinetics of subclones was variable. Interestingly, most RAS pathway mutations at relapse were clonal and exclusive. Cells carrying RAS pathway mutations, especially KRAS G13 mutations, were more often ex vivo resistant to prednisolone and vincristine. No association was found with ex vivo response to daunorubicine, L-asparaginase, 6-mercaptopurine, and 6-thioguanine. Mutant primary leukemic cells were ex vivo sensitive to the MEK-inhibitor trametinib. In addition, trametinib could enhance the cytotoxic effect of prednisolone ex vivo. In DCOG-ALL10 and COALL-97/-03 patients with clonal but not subclonal mutations, MRD levels tended to be more often high compared to wildtype cases (31% vs. 19%, p=0.057), while other risk factors (age, gender, white blood cell count, CNS, prednisone response) where not different. Event-free survival was lower in the standard risk and high risk arms of the DCOG ALL10 protocol (69% vs. 96%, p=0.027 and 56% vs. 100%, p=0.015, respectively). Conclusions Collectively, analysis of 461 diagnostic BCP-ALL patient samples identified RAS pathway mutations in 44% of patients, and one out of four carried a clonal mutation. MRD was the only risk factor associated with clonal RAS pathway mutations. MRD is essential to treatment stratification in many contemporary protocols, such as the DCOG ALL10 protocol, where only patients with negative MRD after induction courses are treated with a reduced regimen (standard risk arm). Given their unfavorable event-free survival, therapy should be adapted for mutated patients in future protocols. Since treatment intensification is not feasible for high risk or relapsed cases, addition of MEK inhibitors may be of benefit especially because they enhance the cytotoxicity of prednisolone. RAS pathway mutation status may therefore serve as biomarker to select patients for MEK-inhibitor treatment in new treatment protocols for children with BCP-ALL. Disclosures No relevant conflicts of interest to declare.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2016
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 3534-3536
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2022
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Blood Advances, American Society of Hematology
    Kurzfassung: Primary bone diffuse large B-cell lymphoma (PB-DLBCL) is a rare extranodal lymphoma subtype. This retrospective study elucidates the currently unknown genetic background of a large clinically well-annotated cohort of DLBCL with osseous localizations (O-DLBCL), including PB-DLBCL. 103 O-DLBCL patients were included and compared with 63 (extra)nodal non-osseous (NO)-DLBCLs with germinal center B-cell phenotype (NO-DLBCL-GCB). Cell-of-origin (COO) was determined by immunohistochemistry and gene-expression-profiling (GEP) using (extended)-NanoString/Lymph2Cx. Mutational profiles were identified with targeted next-generation deep-sequencing, including 52 B-cell lymphoma-relevant genes. O-DLBCLs, including 34 PB-DLBCL, were predominantly classified as GCB-phenotype based on immunohistochemistry (74%) and NanoString analysis (88%). Unsupervised hierarchical clustering of an extended-NanoString/Lymph2Cx demonstrated significantly different GEP-clusters for PB-DLBCL as opposed to NO-DLBCL-GCB (P & lt;0.001). Expression levels of 23 genes of two different targeted GEP-panels, indicated a centrocyte-like phenotype for PB-DLBCL, whereas NO-DLBCL-GCB showed a centroblast-like constitution. PB-DLBCL had significantly more frequent mutations in four GCB-associated genes, i.e. B2M, EZH2, IRF8, and TNFRSF14, compared to NO-DLBCL-GCB (P=0.031, P=0.010, P=0.047, and P=0.003). PB-DLBCL with its corresponding specific mutational profile were significantly associated with a superior overall survival compared to equivalent Ann Arbor limited-stage I/II NO-DLBCL-GCB (P=0.011). This study is the first to demonstrate that PB-DLBCL is characterized by a GCB-phenotype, with a centrocyte-like GEP-pattern and a GCB-associated mutational profile (both involved in immune surveillance) and a favorable prognosis. These novel biology-associated features provide evidence that PB-DLBCL represents a distinct extranodal DLBCL entity and its specific mutational landscape holds potential for targeted therapies (e.g. EZH2-inhibitors).
    Materialart: Online-Ressource
    ISSN: 2473-9529 , 2473-9537
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2021
    ZDB Id: 2876449-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 11916-11918
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2022
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Blood, American Society of Hematology, Vol. 105, No. 4 ( 2005-02-15), p. 1540-1545
    Kurzfassung: Anti–β2–glycoprotein I antibodies are known to have a heterogeneous reactivity against β2–glycoprotein I. We performed this study to characterize the epitope on β2–glycoprotein I to which pathologic anti–β2–glycoprotein I antibodies are directed. Plasma samples from 198 patients with various systemic autoimmune diseases were tested for the presence of lupus anticoagulant and anti–β2–glycoprotein I immunoglobulin G (IgG) antibodies. The reactivity of the anti–β2–glycoprotein I–positive samples was further tested by coating recombinant full-length β2–glycoprotein I and 8 deletion mutants of β2–glycoprotein I onto hydrophilic and hydrophobic enzyme-linked immunosorbent assay (ELISA) plates. Full-length β2–glycoprotein I with point mutations in domain I at positions 8, 40, and 43 were used in inhibition experiments. Fifty-two patients with anti–β2–glycoprotein I IgG antibodies could be divided into 2 patterns. Type A antibodies only recognize domain I when coated onto hydrophobic plates; they do not recognize domain I coated onto hydrophilic plates. Type B antibodies have heterogeneous reactivity for all domains. Type A antibodies recognize the epitope around amino acids Gly40-Arg43 and cause lupus anticoagulant activity. In contrast to type B antibodies, those of type A strongly correlated with thrombosis. In conclusion, antibodies directed at domain I (epitope comprising Gly40 and Arg43) have lupus anticoagulant activity and strongly associate with thrombosis.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2005
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    American Society of Hematology ; 2008
    In:  Blood Vol. 112, No. 11 ( 2008-11-16), p. 1813-1813
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 1813-1813
    Kurzfassung: Background: Several factors influence the occurrence of acute myocardial infarction. One of these factors is thought to be Von Willebrand Factor which serves as adhesive surface for platelets to adhere to the vessel wall. We have recently found that beta2- glycoprotein I is able to inhibit platelet binding to von Willebrand Factor by binding to the A1 domain of Von Willebrand Factor 1. This could indicate that beta2-glycoprotein I possesses antithrombotic properties with respect to arterial thrombosis. In the present study we investigated whether differences in beta2-glycoprotein I plasma levels influence the risk of myocardial infarction. Methods and Results: We have measured beta2-glycoprotein I and Von Willebrand Factor antigen levels in 539 men with a first myocardial infarction and in 611 control subjects who participated in the case-control Study of Myocardial Infarction Leiden (SMILE). Although we did not find a profound effect of beta2-glycoprotein I plasma levels on myocardial infarction in the overall population (odds ratio 0.93, 95% confidence interval 0.65–1.33), there appeared to be a dose-dependent protective effect of increasing beta2-glycoprotein I plasma levels on myocardial infarction in men of 60 years and older. In this age group we found an odds Ratio of 0.44 (95% confidence interval 0.25–0.77) for high beta2-glycoprotein I levels compared to low levels. Furthermore, high plasma levels of beta2-glycoprotein I remained protective for myocardial infarction despite high levels of Von Willebrand Factor. In addition, we studied a possible association between age and Von Willebrand Factor and beta2-glycoprotein I plasma levels. It appeared that both Von Willebrand Factor and beta2-glycoprotein I plasma levels increased with age, but a larger increase in Von Willebrand Factor plasma levels was observed than in beta2-glycoprotein I plasma levels (13.7 % every 10 years versus 5.7% every 10 years). Conclusions: In this study high circulating levels of beta2-glycoprotein I appeared to be associated with a lower risk of myocardial infarction in men over 60 years. In addition we observed a larger increase in Von Willebrand Factor levels with age than beta2- glycoprotein I levels. As beta2-glycoprotein I possesses antithrombotic properties by inhibiting the activity of Von Willebrand Factor in-vitro, this might indicate that during aging the haemostatic balance slowly shifts to a more prothrombotic state 1. Future in-vivo experiments are needed to investigate the exact contribution of beta2-glycoprotein I on the pathophysiology of myocardial infarction and arterial thrombosis in general.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2008
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    American Society of Hematology ; 2006
    In:  Blood Vol. 107, No. 5 ( 2006-03-01), p. 1916-1924
    In: Blood, American Society of Hematology, Vol. 107, No. 5 ( 2006-03-01), p. 1916-1924
    Kurzfassung: Recently, we published the existence of 2 populations of anti-β2-glycoprotein I (β2-GPI) IgG antibodies. Type A antibodies recognize epitope G40-R43 in domain I of β2-GPI and are strongly associated with thrombosis. Type B antibodies recognize other parts of β2-GPI and are not associated with thrombosis. In this study we demonstrate that type A antibodies only recognize plasma-purified β2-GPI when coated onto a negatively charged surface and not when coated onto a neutrally charged surface. The affinity of type B antibodies toward plasma-purified β2-GPI was independent of the charge of the surface to which β2-GPI was coated. Type A antibodies did not recognize plasma-purified β2-GPI in solution, whereas they did recognize recombinant β2-GPI both in solution and coated onto a neutrally charged plate. When the carbohydrate chains were removed from plasma-purified β2-GPI, we found that type A antibodies did recognize the protein in solution. This supports the hypothesis that the difference in recognition of plasma-purified and recombinant β2-GPI is caused by the difference in glycosylation and that epitope G40-R43 of plasma-purified β2-GPI is covered by a carbohydrate chain. Type A anti-β2-GPI antibodies can only recognize this epitope when this carbohydrate chain is displaced as a result of a conformational change. This finding has major implications both for the detection of pathogenic anti-β2-GPI antibodies and the comprehension of the pathophysiology of the antiphospholipid syndrome.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2006
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...