GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (1)
Document type
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall meeting, San Francisco, CA, 2019-12-09-2019-12-13USA, American Geophysical Union
    Publication Date: 2019-12-17
    Description: During the last decade the Arctic has experienced increasing human development while many native communities continue to live a subsistence lifestyle. Off-road winter tundra travel for resource exploration is most cost effective and least environmentally damaging during winter when the tundra is frozen and snow covered. Climate warming, which is occurring at an amplified rate in the Arctic, likely changes the period when access to the off-road tundra travel is possible. There currently exists, however, large uncertainty as to how climate change will impact the low-cost winter travel access across the tundra. Here we defined safe tundra access when soil temperatures are below a soil type dependent freezing temperature and snow cover is at least 20 cm. Our analysis is based on the simulated soil temperatures and snow depths of Land Surface Models (LSMs) contributing to “The Inter-Sectoral Impact Model Intercomparison Project” (ISIMIP). ISIMIP simulations are based on a common protocol, the same input data, the same spatial (0.5°) and temporal resolution (daily modeling output), and span over the period 1861-2100. The LSMs are forced by four different bias-corrected global circulation models (IPSL-CM5A-LR, GFDL-ESM2M, MIROC5, HadGEM2-ES) and three different future conditions (represented via representative concentration pathways (RCP) 2.6, 6.0, 8.5). The simulation results of our model ensemble (60 model combinations) show consistent permafrost warming and changing snow cover patterns at 60°N. Annual off-road tundra travel is considerably reduced (〉50%) under future climate change scenarios, especially under the RCP8.5. The main reduction can be observed in the spring and autumn (〉30%). The results of the multi-model ensemble differ in magnitude, however, their overall trend is consistent. Our results suggest a high vulnerability and substantial changes to the (subsistence) livelihoods of native communities and increasing costs for off-road resource exploration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...