GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: Multigene family ; Pulsed field gel electrophoresis ; Restriction fragment length polymorphism ; Promoter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Genes for the major storage protein of potato, patatin, have been mapped genetically and physically in both the potato and tomato genomes. In potato, all patatin genes detected by the cDNA clone pGM01 map to a single locus at the end of the long arm of chromosome 8. By means of pulsed field gel electrophoresis (PFGE) it was possible further to delimit this locus, containing 10–15 copies of the gene, to a maximum size of 1.4 million base pairs. Hybridizations with class-specific clones suggest that the locus is at least partially divided into domains containing the two major types of patatin genes, class I and II. In tomato, patatin-homologous sequences were found to reside at the orthologous locus at the end of chromosome 8. The approximately three copies in tomato were localized by PFGE to a single fragment of 300 kilobases. Whereas the class II-specific 5′ promoter sequences reside in tomato at the same locus as the coding sequences, the single class I-specific copy of the 5′ promoter sequences was localized on chromosome 3 with no coding sequence attached to it. A clone from this chromosome 3 locus of tomato was isolated and by restriction fragment length polymorphism mapping it could be further shown that a similar class I-specific sequence also exists on chromosome 3 of potato. As in tomato, this copy on chromosome 3 is not linked to a coding sequence for patatin. The results are discussed with respect to genome evolution and PFGE analysis of complex gene families.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 232 (1992), S. 215-220 
    ISSN: 1617-4623
    Keywords: 5S ribosomal genes ; Triticum aestivum ; Pulsed field gel electrophoresis ; Genetic fingerprinting ; Hypervariability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The long-range structure of 5S rRNA gene clusters has been investigated in wheat (Triticum aestivum L.) by means of pulsed field gel electrophoresis. Using aneuploid stocks, 5S rRNA gene clusters were assigned to sites on chromosomes 1B, 1D, 513 and 5D. Cluster sizes were evaluated and the copy number of 5S DNA repeats was estimated at 4700-5200 copies for the short repeating unit (410 bp) and about 3100 copies for the long repeat (500 bp) per haploid genome. A comparison of wheat cultivars revealed extremely high levels of polymorphism in the 5S rRNA gene clusters. With one restriction enzyme digest all varieties tested gave unique banding patterns and, on a per fragment basis, 21-fold more polymorphism was detected among cultivars for 5S DNA compared to standard restriction fragment length polymorphisms (RFLPs) detected with single copy clones. Experiments with aneuploid stocks suggest that the 5S rRNA gene clusters at several chromosomal sites contribute to this polymorphism. A number of previous reports have shown that wheat cultivars are not easily distinguished by isozymes or RFLPs. The high level of variation detected in 5S rRNA gene clusters therefore offers the possibility of a sensitive fingerprinting method for wheat. 5S DNA and other macro-satellite sequences may also serve as hypervariable Mendelian markers for genetic and breeding experiments in wheat.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 238 (1993), S. 294-303 
    ISSN: 1617-4623
    Keywords: Telomere mapping ; Subtelomeric DNA satellite ; Pulsed field gel electrophoresis ; In situ hybridization ; Barley (Hordeum vulgare)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Barley (Hordeum vulgare L.) telomeres were investigated by means of pulsed field gel electrophoresis (PFGE) and in situ hybridization. In situ hybridization showed that a tandemly repeated satellite sequence has a subtelomeric location, and is present at thirteen of the fourteen chromosome ends. PFGE revealed that this satellite sequence is physically close to the telomeric repeat. Pulsed field gel electrophoresis was then used for segregation analysis and linkage mapping of several telomeric and satellite loci in a segregating doubled-haploid population. The telomeric repeat displayed a hypervariable segregation pattern with new alleles occurring in the progeny. Eight satellite and telomeric sites were mapped on an restriction fragment length polymorphism (RFLP)-map of barley, defining the ends of chromosome arms 1L, 2S, 3L, 4S, 4L, 5S and 6. One satellite locus mapped to an interstitial site on the long arm of chromosome 3. The pyhsical location of this locus was confirmed by in situ hybridization to wheat/barley addition line 3.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...