GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Document type
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 408 (2000), S. 153-153 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Space-borne instruments have revolutionized research on the circulation patterns and strengths of the oceans. For instance, a satellite can observe all of the world's oceans in less than ten days. With radar technology, it can measure the shape of the sea surface and provide observations on the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Progress in Oceanography, 48 (2-3). pp. 289-312.
    Publication Date: 2016-10-07
    Description: Seasonal changes in eddy energy are used to investigate the role of high-frequency wind forcing in generating eddy kinetic energy in the oceans. To this end, we analyze two experiments of an eddy-permitting model of the North Atlantic driven by daily and monthly mean wind stress fields, and compare results with corresponding changes in the variance of the wind fields, and related results from previous studies using altimeter and current meter data. With daily wind-stress forcing the model is found to be in general agreement with altimetric observations and reveal a complex pattern of temporal changes in variability over the North Atlantic. Observations and the model indicate enhanced levels of eddy energy during winter months over several areas of the northern and, particularly northeastern North Atlantic. Since the wind-generated variability is primarily barotropic, its signal can be detected mostly in the low-energy regions of the northern and north-eastern North Atlantic, which are remote from baroclinically unstable currents. There the winter-to-summer difference in simulated eddy kinetic energy caused by the variable wind forcing is 〈0.5 cm2 s2 between 30° and 55°N, and is 1–3 cm2 s2 north of 55°N. Seasonal changes in kinetic energy are insignificant along the path of the North Atlantic current and south of about 30°N. The weak depth dependence of the seasonal changes in eddy energy implies that the relative importance of wind-generated eddy energy is maximum at depth where the general (baroclinic) variability level is low. Accordingly, a significant correlation is found between the seasonal cycle in the variance of wind stress and the seasonal cycle in eddy energy over a substantially wider area than near the surface, notably across the entire eastern North Atlantic between the North Atlantic Current and the North Equatorial Current.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...