GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2000-2004  (2)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    ISSN: 1574-6941
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Nodularin (Nod), produced by the brackish/marine cyanobacterium Nodularia spumigena, is a potent hepatotoxin, tumor promoter and is possibly carcinogenic to mammals. It is structurally and toxicologically related to the microcystins, produced by Microcystis aeruginosa in fresh water. A better understanding of the kinetics of Nod production might provide an insight into the physiological and ecological function of cyanobacterial hepatotoxins. The present study presents a simple model simulating the concentration of Nod in N. spumigena KAC66 during phosphorus-limited growth. The main assumption of the model is that the Nod production rate is proportional to the chlorophyll-a (Chla) concentration. The model was tuned to data from phosphorus-limited batch cultures of N. spumigena KAC66 at saturating light and was able to predict 96% or more of the variation in both Chla and Nod concentration. No significant effect of available nitrogen source was found on the Chla-specific Nod production rate although specific growth rates were higher in ammonium and nitrate grown cultures compared to cultures grown with N2 as the sole nitrogen source. Literature data on microcystin production by M. aeruginosa in phosphorus-limited chemostats fitted the model predictions well, except at very low dilution rates (0.1 day−1). The good fit with the proposed model to our own and literature data suggests that the production of hepatotoxic cyanotoxins is not regulated upon growth reduction due to phosphate limitation.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-1955
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract Parasitism within the group of dinoflagellates is a widespread phenomenon. Whether the parasitic dinoflagellates exhibit specificity in their infection is not well known, but this possibility has become an important issue in the development of biological control of harmful algal blooms. The 18S rDNA sequences from the parasite Amoebophrya sp. and its dinoflagellate host Dinophysis norvegica were determined and compared with the published sequence of Amoebophrya sp. infecting Gymnodinium sanguineum and other dinoflagellates. The results showed that the sequence from the parasite within D. norvegica was clustered with that of the one from G. sanguineum with 100% bootstrap support in a maximum-likelihood analysis. The observed identity between these two sequences was 93%, which indicates that they are not identical species. The two sequences from Amoebophrya sp. were deeply branched within the group of dinoflagellate sequences and represent the earliest diverging dinoflagellates. The sequence from the parasite Parvilucifera infectans, also infecting D. norvegica, was not closely related to the Amoebophrya sp. sequences. The sequence from D. norvegica appeared as a sister group to a cluster containing Prorocentrum lima and Alexandrium spp. without significant bootstrap support. The data presented herein support the hypothesis that A. ceratii comprises more than one species, and this opens the possibility that infections of harmful algal species might involve more than one Amoebophrya species.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...