GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2004. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 62 (2004): 169-193, doi:10.1357/002224004774201681.
    Description: It is well known that the barotropic, wind-driven, single-gyre ocean model reaches an inertially-dominated equilibrium with unrealistic circulation strength when the explicit viscosity is reduced to realistically low values. It is shown here that the overall circulation strength can be controlled nonlocally by retaining thin regions of enhanced viscosity parameterizing the effects of increased mixing and topographic interaction near the boundaries. The control is possible even when the inertial boundary layer width is larger than the enhanced viscosity region, as eddy fluxes of vorticity from the interior transport vorticity across the mean streamlines of the inertial boundary current to the frictional region. In relatively inviscid calculations the eddies are the major means of flux across interior mean streamlines.
    Description: B.F.-K. was supported in part by an ONR-supported NDSEG Fellowship, an MIT Presidential Fellowship, a GFDL/Princeton University postdoctoral fellowship, and a NOAA Climate and Global Change postdoctoral fellowship (managed by UCAR). Both authors were supported in part by NSF OCE 9910654.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 753053 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2003. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 481 (2003): 329-353, doi:10.1017/S0022112003004051.
    Description: In this article we investigate time-periodic shear flows in the context of the two-dimensional vorticity equation, which may be applied to describe certain large-scale atmospheric and oceanic flows. The linear stability analyses of both discrete and continuous profiles demonstrate that parametric instability can arise even in this simple model: the oscillations can stabilize (destabilize) an otherwise unstable (stable) shear flow, as in Mathieu's equation (Stoker 1950). Nonlinear simulations of the continuous oscillatory basic state support the predictions from linear theory and, in addition, illustrate the evolution of the instability process and thereby show the structure of the vortices that emerge. The discovery of parametric instability in this model suggests that this mechanism can occur in geophysical shear flows and provides an additional means through which turbulent mixing can be generated in large-scale flows.
    Description: F.P.’s and G.F.’s research was supported by grants from NSF, OPP- 9910052 and OCE-0137023. J.P.’s research is supported in part by a grant from NSF, OCE-9901654.
    Keywords: Time-periodic shear flows ; Parametric instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 349820 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: The topic of the Principal Lectures for the forty-ninth year of the program was “Boundary Layers”. The subject centers around those problems in which the boundary conditions lead to a large gradient near the boundary. Nine of this year’s principal lectures were given by Joe Pedlosky and the tenth was given by Steve Lentz. The fluid mechanics of boundary layers was reviewed, first starting from its classical roots and then extending the concepts to the sides, bottoms, and tops of the oceans. During week four, a mini-symposium on “Ocean Bottom and Surface Boundary Layers” gathered a number of oceanographers and meteorologists together to report recent advances. And, finally, Kerry Emanuel of MIT delivered the Sears Public Lecture to a packed hall in Clark 507. The title was “Divine Wind: The History and Sciences of Hurricanes.”
    Description: Funding was provided by the National Science Foundation under grant OCE-0325296 and by the Office of Naval Research, Processes and Prediction Division, Physical Oceanography Program under grant N00014-07-10776
    Keywords: Boundary layer ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2022-05-26
    Description: Author Posting. © Cambridge University Press, 2003. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 490 (2003): 189-215, doi:10.1017/S0022112003005007.
    Description: The baroclinic instability of a zonal current on the beta-plane is studied in the context of the two-layer model when the shear of the basic current is a periodic function of time. The basic shear is contained in a zonal channel and is independent of the meridional direction. The instability properties are studied in the neighbourhood of the classical steady-shear threshold for marginal stability. It is shown that the linear problem shares common features with the behaviour of the well-known Mathieu equation. That is, the oscillatory nature of the shear tends to stabilize an otherwise unstable current while, on the contrary, the oscillation is able to destabilize a current whose time-averaged shear is stable. Indeed, this parametric instability can destabilize a flow that at every instant possesses a shear that is subcritical with respect to the standard stability threshold. This is a new source of growing disturbances. The nonlinear problem is studied in the same near neighbourhood of the marginal curve. When the time-averaged flow is unstable, the presence of the oscillation in the shear produces both periodic finite-amplitude motions and aperiodic behaviour. Generally speaking, the aperiodic behaviour appears when the amplitude of the oscillating shear exceeds a critical value depending on frequency and dissipation. When the time-averaged flow is stable, i.e. subcritical, finite-amplitude aperiodic motion occurs when the amplitude of the oscillating part of the shear is large enough to lift the flow into the unstable domain for at least part of the cycle of oscillation. A particularly interesting phenomenon occurs when the time-averaged flow is stable and the oscillating part is too small to ever render the flow unstable according to the standard criteria. Nevertheless, in this regime parametric instability occurs for ranges of frequency that expand as the amplitude of the oscillating shear increases. The amplitude of the resulting unstable wave is a function of frequency and the magnitude of the oscillating shear. For some ranges of shear amplitude and oscillation frequency there exist multiple solutions. It is suggested that the nature of the response of the finite-amplitude behaviour of the baroclinic waves in the presence of the oscillating mean flow may be indicative of the role of seasonal variability in shaping eddy activity in both the atmosphere and the ocean.
    Description: J.P.’s research is supported in part by a grant from NSF, OCE 9901654.
    Keywords: Baroclinic instability ; Baroclinic waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 393774 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...