GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Oceanography. ; Electronic books.
    Description / Table of Contents: This concise introduction to the core fundamentals of fluid mechanics, non-equilibrium thermodynamics and the common approximations for geophysical fluid dynamics presents in addition a comprehensive approach to large-scale ocean circulation theory.
    Type of Medium: Online Resource
    Pages: 1 online resource (717 pages)
    Edition: 1st ed.
    ISBN: 9783642234507
    DDC: 551.462
    Language: English
    Note: Intro -- List of Symbols -- Part I Fundamental Laws -- 1 Preliminaries -- - -- 1.1 Flow Kinematics -- 1.1.1 Lagrangian and Eulerian Representation -- 1.1.2 Deformation and Rotation -- 1.2 Thermodynamics of Sea Water -- 1.2.1 Salt Concentration and Salinity -- 1.2.2 Additive State Variables -- 1.2.3 First Law of Thermodynamics -- 1.2.4 Second Law of Thermodynamics -- 1.2.5 Thermodynamic Potentials -- 1.2.6 Equation of State -- 1.2.7 Specific Heat -- 2 Conservation Laws for Moving Fluids -- - -- 2.1 General Form of Conservation Equations -- 2.2 Mass Conservation -- 2.2.1 Total Mass and Salt Conservation Equation -- 2.2.2 Boundary Conditions for the Fluxes of Total Mass and Salt -- 2.3 Conservation of Momentum -- 2.3.1 Stresses, Pressure and Frictional Forces -- 2.3.2 Boundary Condition for the Momentum Flux -- 2.3.3 Conservation Equations on the Rotating Earth -- 2.3.4 The Force of Gravity on the Earth -- 2.4 Energy Conservation -- 2.4.1 Contributions to the Change of Energy in a Material Volume -- 2.4.2 Mechanical Energy -- 2.4.3 Internal Energy and Enthalpy -- 2.4.4 Total Energy and Total Enthalpy -- 2.4.5 Boundary Condition for the Enthalpy Flux -- 2.5 Entropy Budget -- 2.5.1 Entropy Sources and Flux-Gradient Relations -- 2.5.2 Onsager Relations -- 2.6 Temperature Equations -- 2.6.1 In-situ Temperature -- 2.6.2 Conservative Temperature -- 2.6.3 Potential Temperature -- 2.6.4 Conservative Temperature as a State Variable -- 2.7 Density Variables -- 2.7.1 Potential Density -- 2.7.2 Neutral Surface Elements -- 2.8 Molecular and Turbulent Transports -- 2.8.1 Magnitude of Molecular Transports -- 2.8.2 Reynolds and Hesselberg Averaging -- 2.9 The State of Rest -- 2.9.1 Hydrostatic Balance -- 2.9.2 Static Stability -- 2.10 * Some Differences to Atmospheric Thermodynamics -- 2.10.1 Differences in Thermodynamics -- 2.10.2 Differences in Conservation Laws. , 2.11 Vorticity -- 2.11.1 Kinematical Properties -- 2.11.2 Dynamical Properties -- 2.11.3 Ertel's Potential Vorticity -- 2.12 * Lagrangian Concepts in Fluid Mechanics -- 2.12.1 Incompressible Fluid -- 2.12.2 Compressible Isentropic Fluid -- 2.12.3 Rotating Fluid with Gravity -- 2.12.4 Rotating Stratified Fluid -- 2.12.5 A Variational Principle for Eulerian Coordinates -- Part II Common Approximations -- 3 Approximations Derived from Mode Filtering -- - -- 3.1 A Prognostic Equation for the Pressure -- 3.2 Linear Waves -- 3.3 Filtering of Modes -- 4 Approximations Relating to Density Changes and Geometric Conditions -- - -- 4.1 Approximations Involving Density -- 4.1.1 Inelastic Approximation -- 4.1.2 Boussinesq Approximation -- 4.1.3 Dynamical Role of Sea Water Compressibility -- 4.1.4 Energetics in the Boussinesq Approximation -- 4.1.5 Potential Vorticity in the Boussinesq Approximation -- 4.1.6 Full Incompressibility and Combination of Salt and Heat Budgets -- 4.2 Shallow Water Approximation -- 4.2.1 Oblate Spheroidal Coordinates -- 4.2.2 Spherical Approximation -- 4.2.3 Thin-Shell Approximation -- 4.2.4 Small Aspect Ratio -- 4.2.5 Primitive Equations -- 4.2.6 Energetics and Potential Vorticity in the Shallow Water Approximation -- 5 Geostrophic and Quasi-Geostrophic Motions -- - -- 5.1 Geostrophic Scaling -- 5.2 Quasi-Geostrophic Approximation -- 5.2.1 Expansion for Small Parameters -- 5.2.2 Quasi-Geostrophic Vorticity Equation -- 5.2.3 Quasi-Geostrophic Potential Vorticity -- 5.2.4 Boundary Conditions -- 5.2.5 Energetics of Quasi-Geostrophic Motions -- 5.2.6 Available Potential Energy -- 5.3 Planetary-Scale Geostrophic Motions -- 5.3.1 The M-Representation -- 5.3.2 Thermal Wind-Equations -- 5.3.3 Planetary Ideal Fluid Equations -- Part III Ocean Waves -- 6 Sound Waves -- - -- 6.1 Approximations and Perturbation Expansion -- 6.2 Plane Waves. , 6.2.1 Group Velocity I: Interference of Waves -- 6.2.2 Energy Conservation I: Kinetic and Elastic Energy -- 6.2.3 Sound Waves in a Mean Current -- 6.3 Propagation in a Variable Environment: WKBJ Approximation -- 6.3.1 General Wave Kinematics -- 6.3.2 Group Velocity II: Rays and Wave Packages -- 6.3.3 Energy Conservation II: Energy Flux and Group Velocity -- 6.3.4 Pathways of Sound Wave Propagation in the Ocean -- 7 Gravity Waves -- - -- 7.1 Governing Equations -- 7.2 Plane Gravity Waves -- 7.2.1 Propagation Characteristics -- 7.2.2 Energy Conservation -- 7.3 Propagation in Variable Stratification -- 7.3.1 WKBJ Approximation for Internal Waves -- 7.3.2 Turning Points -- 7.4 The Influence of Boundaries -- 7.4.1 Reflection at a Plane Interface -- 7.4.2 Reflection at a Sloping Bottom -- 7.4.3 Vertical Modes -- 7.4.4 Accuracy of the Rigid-Lid Condition -- 7.5 Surface Waves -- 7.6 Group Velocity III: Initial Value Problems and Stationary Phase Method -- 7.7 Influence of a Mean Flow -- 7.7.1 Critical Layer Absorption -- 7.7.2 Propagation in a Geostrophic Current -- 7.7.3 Stability of Shear Flows -- 8 Long Waves -- - -- 8.1 Long Gravity Waves -- 8.1.1 Barotropic and Baroclinic Modes -- 8.1.2 Dispersion Relation and Group Velocity -- 8.1.3 Geostrophic Adjustment -- 8.1.4 Influence of Horizontal Boundaries -- 8.1.5 Kelvin Waves -- 8.1.6 Hydraulic Control: Wave Propagation and Nonlinearity -- 8.2 Planetary Waves in Midlatitudes -- 8.2.1 Propagation Characteristics -- 8.2.2 Energy of Planetary Waves -- 8.2.3 Reflection at Meridional Boundaries -- 8.2.4 Topographic-Planetary Waves -- 8.2.5 Stationary Rossby Waves in a Baroclinic Flow over a Ridge -- 8.2.6 Spin-up of the Wind-Driven Basin Circulation -- 8.3 Equatorial Waves -- 8.3.1 Refraction due to Variations of the Coriolis Parameter -- 8.3.2 Equation for the Meridional Velocity. , 8.3.3 Meridional Eigenfunctions -- 8.3.4 Wave Solutions -- 8.3.5 Equatorial Kelvin Waves -- 8.3.6 Yanai Waves -- 8.3.7 Equatorial Rossby and Gravity Waves -- 8.3.8 Reflection at Meridional Boundaries -- 8.4 The Oceanic Waveguide -- 8.5 Influence of a Mean Flow on Planetary Waves -- 8.5.1 Modification of the Doppler Shift -- 8.5.2 Energy Transfer Between Waves and Mean Flow -- 8.5.3 Conditions for Instability -- 8.5.4 Energetics of Parcel Exchanges -- 9 * Lagrangian Theory of Ocean Waves -- - -- 9.1 Sound Waves as Example -- 9.2 Adiabatic Invariants -- 9.3 Variational Approach to Wave Trains -- 9.4 A Rigorous Derivation -- 9.5 Rossby Waves and Internal Gravity Waves as Examples -- 9.6 Wave-Wave Interactions -- 9.6.1 Resonant Wave Triads -- 9.6.2 Interaction Theory for Random Wave Fields -- 10 Forced Waves -- - -- 10.1 The Forcing Functions of Long Waves -- 10.2 Forced Midlatitude Waves -- 10.3 Forced Equatorial Waves -- 10.4 * Energetics of a Random Gravity Wave Field -- 10.4.1 Generation Processes -- 10.4.2 Dissipation Mechanisms -- 10.4.3 Some Prototype Balances -- 10.4.4 Resonant Transfer -- 10.4.5 The Link to Mixing -- Part IV Oceanic Turbulence and Eddies -- 11 Small-Scale Turbulence -- - -- 11.1 Kolmogorov's Theory of Homogeneous Turbulence -- 11.1.1 Isotropy -- 11.1.2 Momentum and Kinetic Energy in Homogeneous Turbulence -- 11.1.3 Large and Small Length Scales -- 11.1.4 Equilibrium Range and Inertial Subrange -- 11.2 Turbulent Mixing -- 11.2.1 Heuristic Approaches -- 11.2.2 Turbulent Diffusion in the Lagrangian Reference System -- 11.2.3 Eulerian Diffusion by Small-Scale Turbulence -- 11.3 Inhomogeneous Three-Dimensional Turbulence -- 11.3.1 Energetic Constraints -- 11.3.2 Turbulence Models for the Surface Boundary Layer -- 11.3.3 Turbulence in the Ocean Interior -- 12 Geostrophic Turbulence -- - -- 12.1 Homogeneous Turbulence in Two Dimensions. , 12.1.1 Inverse Energy Cascade -- 12.1.2 A Numerical Example of Two-Dimensional Turbulence -- 12.1.3 Equilibrium Range -- 12.2 Mesoscale Eddies and Their Impact on the Mean Flow -- 12.2.1 Energetics of Mesoscale Eddies and the Lorenz Cycle -- 12.2.2 Isopycnal Mixing Tensor -- 12.2.3 Transformed Eulerian Mean -- 12.2.4 Gent and McWilliams Parameterization and the Bolus Velocity -- 12.2.5 Isopycnal Mixing and Transformed Eulerian Mean -- 12.2.6 * Mesoscale Eddy Effects in the Momentum Equation -- 12.3 * Alternative Averaging Frameworks -- 12.3.1 Temporal Residual Mean -- 12.3.2 Rotational Eddy Fluxes -- 12.3.3 Generalized Osborn-Cox Relation -- 12.3.4 Generalized Lagrangian Mean -- 12.3.5 Semi-Lagrangian (Isopycnal) Mean -- 12.3.6 Relating Lagrangian, Eulerian, and Semi-Lagrangian Mean -- Part V Aspects of Ocean Circulation Theory -- 13 Forcing of the Ocean -- - -- 13.1 Bulk Formulae as Boundary Conditions -- 13.2 Simplified Boundary Conditions -- 14 The Wind-Driven Circulation -- - -- 14.1 The Flat-Bottom Wind-Driven Circulation -- 14.1.1 The Elementary Current System -- 14.1.2 Ekman Spiral -- 14.1.3 Ekman Transport -- 14.1.4 Ekman Pumping -- 14.1.5 Equilibrium Wind-Driven Model Regimes -- 14.1.6 The Western Boundary Current -- 14.2 The Role of Stratification and Topography -- 14.2.1 The JEBAR Term -- 14.2.2 The f/h Contours -- 14.2.3 Sverdrup's Catastrophe -- 14.2.4 The Bottom Pressure Torque -- 14.2.5 A Realistic Application of the BARBI Model -- 14.2.6 The Baroclinic Stommel Equation -- 14.3 Main Thermocline Dynamics -- 14.3.1 Scaling Considerations -- 14.3.2 Similarity Solutions -- 14.3.3 Ideal Fluid Solutions -- 14.3.4 Thermocline Ventilation in an Isopycnal Layer Model -- 14.3.5 Circulation in Unventilated Regions -- 15 The Meridional Overturning of the Oceans -- - -- 15.1 Basic Ingredients of the Meridional Overturning. , 15.1.1 Water Masses of the Ocean.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    Berlin : Springer
    Keywords: Ocean circulation ; Ocean-atmosphere interaction ; Meeresströmung ; Meereskunde ; Dynamik
    Type of Medium: Book
    Pages: XXIII, 704 S. , Ill., graph. Darst. , 26 cm
    ISBN: 9783662506059 , 9783642234491 , 3642234496
    RVK:
    Language: English
    Note: Enth. Literaturangaben und Index
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Berlin, Heidelberg : Springer Berlin Heidelberg
    Keywords: Geography ; Oceanography ; Physical geography ; Earth Sciences ; Geography ; Oceanography ; Physical geography ; Meeresströmung ; Meeresströmung
    Description / Table of Contents: Carsten Eden
    Type of Medium: Online Resource
    Pages: Online-Ressource (XXIV, 704p. 199 illus. in color, digital)
    ISBN: 9783642234507
    Series Statement: SpringerLink
    RVK:
    Language: English
    Note: Includes bibliographical references and index , pt. 1. Fundamental laws -- pt. 2. Common approximations -- pt. 3. Ocean waves -- pt. 4. Oceanic turbulence and eddies -- pt. 5. Aspects of ocean circulation theory -- pt. 6. Appendix.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  Springer, Heidelberg, 704 pp. ISBN 978-3-642-23449-1
    Publication Date: 2012-06-12
    Type: Book , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer Verlag Berlin
    In:  EPIC3Berlin, Springer Verlag Berlin, 704 p., ISBN: 978-3-642-23449-1
    Publication Date: 2019-07-16
    Description: Ocean Dynamics’ is a concise introduction to the fundamentals of fluid mechanics, non-equilibrium thermodynamics and the common approximations for geophysical fluid dynamics, presenting a comprehensive approach to large-scale ocean circulation theory. The book is written on the physical and mathematical level of graduate students in theoretical courses of physical oceanography, meteorology and environmental physics. An extensive bibliography and index, extensive side notes and recommendations for further reading, and a comparison with the specific atmospheric physics where applicable, makes this volume also a useful reading for researchers. Each of the four parts of the book – fundamental laws, common approximations, ocean waves, oceanic turbulence and eddies, and selected aspects of ocean dynamics – starts with elementary considerations, blending then classical topics with more advanced developments of fluid mechanics and theoretical oceanography. The last part covers the theory of the global wind-driven circulation in homogeneous and stratified regimes, the circulation and overturning in the Southern Ocean, and the global meridional overturning and thermohaline-driven circulation. Emphasis is placed on simple physical models rather than access to extensive numerical results, enabling students to understand and reproduce the complex theory mostly by analytical means. All equations and models are derived in detail and illustrated by numerous figures. The appendix provides short excursions into the mathematical background, such as vector analysis, statistics, and differential equations
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...