GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    Schlagwort(e): Seawater -- Organic compound content. ; Chemical oceanography. ; Biogeochemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (712 pages)
    Ausgabe: 2nd ed.
    ISBN: 9780124071537
    DDC: 551.46/6
    Sprache: Englisch
    Anmerkung: Front Cover -- Biogeochemistry of Marine Dissolved Organic Matter -- Copyright -- Dedication -- Contents -- List of Contributors -- Foreword -- References -- Preface -- Chapter 1: Why Dissolved Organics Matter: DOC in Ancient Oceans and Past Climate Change -- I. Overview -- II. Marine Carbon Cycling -- A. A Tale of Three Ocean Carbon "Pumps" -- B. A Fourth Appears-The Microbial Carbon Pump -- III. Interpreting the Geological Past -- A. Carbon Isotopes as Proxies for Past Global Carbon Cycle Changes -- B. Reconstructing Past Steady-State Modes of Global Carbon Cycling -- C. Interpreting Transient Carbon Cycle Perturbations -- D. Ocean DOC and Ancient Carbon Cycling: An Example from the Paleocene and Eocene -- E. Ocean DOC and Ancient Carbon Cycling: An Example from the Precambrian -- IV. Implications for Future Global Change? -- Acknowledgements -- References -- Chapter 2: Chemical Characterization and Cycling of Dissolved Organic Matter -- I. Introduction -- II. Isolation of DOM from Seawater -- A. Isolation of Hydrophobic DOM by Solid-Phase Extraction -- B. Isolation of High Molecular Weight DOM by Ultrafiltration -- C. Isolation of DOM by Reverse Osmosis/Electrically Assisted Dialysis -- III. Chemical Characterization of DOM -- A. Polysaccharides in DOM -- B. Proteins and Amino Acids in DOM -- C. Humic Substances in Solid-Phase Extractable DOM (SPE-DOM) -- 1. Characterization of SPE-DOM by High-Field NMR -- 2. Characterization of SPE-DOM by High-Resolution MS -- IV. Links Between DOM Composition and Cycling -- A. Composition and the Cycling of Labile DOM -- B. Composition and the Cycling of Semi-Labile DOM -- C. Composition and the Cycling of Refractory DOM -- V. Future Research -- Acknowledgments -- References -- Chapter 3: DOM Sources, Sinks, Reactivity, and Budgets -- I. Introduction -- II. DOM Production Processes. , A. Extracellular Phytoplankton Production -- 1. Extracellular Release Models -- a. Overflow Model -- b. Passive Diffusion Mode -- c. Model Comparison -- 2. Experimental and Field Observations -- a. Using Radioisotopic Tracers -- b. Microcosm, Mesocosm, and Field Observations -- c. ER Quality and Transparent Exopolymer Particles -- B. Grazer-Induced DOM Production -- 1. Herbivory -- a. Mesozooplankton -- b. Microzooplankton -- 2. Omnivory and Carnivory -- 3. Bacterivory -- 4. Biogeochemical Significance -- C. DOM Production via Cell Lysis -- 1. Viral Lysis and the Viral Shunt -- a. Biogeochemical Significance -- 2. Bacterial Lysis -- 3. Allelopathy -- D. Solubilization of Particles -- E. Prokaryote Production of DOM -- 1. Chemoautotrophy -- 2. Chemoheterotrophy -- III. DOM Removal Processes -- A. Biotic Consumption of DOM -- 1. Prokaryotes -- a. Bacterial Growth Efficiency -- b. Bacterial Carbon Demand -- c. Photoheterotrophy -- 2. Eukaryotes -- B. Abiotic Removal Processes -- 1. Phototransformation -- 2. Sorption of DOM onto Particles -- 3. Condensation of Marine Microgels -- 4. Hydrothermal Circulation -- IV. DOM Accumulation -- A. Abiotic Formation of Biologically Recalcitrant DOM -- B. Biotic Formation of Recalcitrant DOM -- 1. Microbial Carbon Pump -- a. Direct Source via the MCP -- b. Microbial Transformation -- c. Time Scales of DOM Persistence -- 2. Limitation of Microbial Growth and DOM Accumulation -- 3. Eukaryote Source of Recalcitrant DOM -- C. Neutral Molecules and Preservation -- D. Biogeochemical Implications of Organic Matter Partitioning into Recalcitrant DOM -- V. DOM Reactivity -- A. Biologically Labile DOM -- B. Biologically Semi-labile and Semi-refractory DOM -- 1. SLDOC -- 2. SRDOC -- C. Biologically Refractory and Ultra-refractory DOM Pools -- 1. URDOC -- 2. RDOC -- VI. The Priming Effect. , VII. Microbial Community Structure and DOM Utilization -- VIII. DOC in the Ocean Carbon Budget -- A. Autochthonous Sources -- 1. Epipelagic -- 2. Ocean Interior -- a. Deep Chemoautotrophy -- B. Allochthonous Sources -- IX. Summary -- Acknowledgments -- References -- Chapter 4: Dynamics of Dissolved Organic Nitrogen -- I. Introduction -- II. DON Concentrations in Aquatic Environments -- A. Methods to Measure DON Concentrations -- B. Global Distributions and Fate -- C. Cross System Comparison -- D. Seasonal Variations -- III. Composition of the DON Pool -- A. Chemical Composition-Characterizable DON -- 1. Urea -- 2. Amino Acids -- 3. Humic and Fulvic Substances -- 4. Other Organic Compounds -- B. Chemical Composition-Opening the Black Box of Uncharacterized DON -- 1. DON Isolation Methods -- 2. DON Characterization Methods -- 3. Chemical Characteristics of Marine DON -- C. Concentration and Composition of the DON Pool: Research Priorities -- IV. Sources of DON to the Water Column -- A. Autochthonous Sources -- 1. Phytoplankton -- 2. N 2 Fixers -- 3. Bacteria -- 4. Micro- and Macrozooplankton -- 5. Viruses -- B. Allochthonous Sources -- 1. Rivers -- 2. Groundwater -- 3. Atmospheric Deposition -- C. Methods to Estimate Rates of Autochthonous DON Release -- D. Literature Values of DON Release Rates in Aquatic Environments -- 1. Bulk DON -- 2. Urea -- 3. Amino Acids and Other Organics -- E. Sources of DON: Research Priorities -- V. Sinks for DON -- A. DON Bioavailability -- B. Methods to Estimate Rates of DON Uptake -- 1. Measuring Uptake Rates -- 2. Determining Which Organisms Contribute to Uptake -- 3. Flow Cytometric Sorting -- 4. Molecular Approaches -- 5. Stable Isotope Probing -- C. Mechanisms that Contribute to DON Bioavailability -- 1. Enzymatic Decomposition -- 2. Pinocytosis -- 3. Photochemistry -- 4. Salinity-mediated Uptake. , D. Literature Values of DON Uptake in Aquatic Environments -- 1. Bulk DON -- 2. Urea -- 3. Amino Acids -- 4. Humic Substances -- 5. Other Organic Compounds -- E. Sinks for DON: Research Priorities -- VI. Summary -- A. DON Concentrations in Aquatic Environments -- B. Composition of the DON Pool -- C. Sources of DON to the Water Column -- D. Sinks for DON -- Acknowledgments -- References -- Chapter 5: Dynamics of Dissolved Organic Phosphorus -- I. Introduction -- II. Terms, Definitions, and Concentration Units -- III. The Early Years of Pelagic Marine P-Cycle Research (1884-1955) -- IV. The Pelagic Marine P-Cycle: Key Pools and Processes -- V. Sampling, Incubation, Storage, and Analytical Considerations -- A. Sampling -- B. Sample Processing, Preservation, and Storage -- C. Detection of P i and P-Containing Compounds in Seawater -- 1. Analysis of Pi -- 2. Analysis of TDP -- D. Analytical Interferences in SRP and TDP Estimation -- E. Use of Isotopic Tracers in P-cycle Research -- VI. DOP in the Sea: Variations in Space -- A. Regional and Depth Variations in DOP -- B. DOP Concentrations in the Deep Sea -- C. Stoichiometry of Dissolved and Particulate Matter Pools -- VII. DOP in the Sea: Variations in Time -- A. English Channel -- B. North Pacific Subtropical Gyre -- C. Eastern Mediterranean Sea -- VIII. DOP Pool Characterization -- A. Molecular Weight Characterization of the DOP Pool -- B. DOP Pool Characterization by Enzymatic Reactivity -- C. DOP Pool Characterization by 31 P-NMR -- D. DOP Pool Characterization by Partial Photochemical Oxidation -- E. Direct Measurement of DOP Compounds -- 1. Nucleic Acids -- 2. ATP and Related Nucleotides -- 3. Cyclic AMP -- 4. Lipids -- 5. Vitamins -- 6. Inorganic Poly-Pi and Pyro-Pi -- F. Biologically Available P -- G. DOP: The "Majority" View -- IX. DOP Production, Utilization, and Remineralization. , A. DOP Production and Remineralization -- B. Direct Utilization of DOP -- C. The Methylphosphonate "Cycle" -- D. Enzymes as P-cycle Facilitators -- E. Taxon-specific DOP Uptake -- F. DOP Interactions with Light and Suspended Minerals -- X. Conclusions and Prospectus -- Acknowledgments -- References -- Chapter 6: The Carbon Isotopic Composition of Marine DOC -- I. Introduction -- II. Carbon Isotope Geochemistry Primer -- A. Carbon-13 and Stable Isotope Systematics -- B. Carbon-14 -- III. DOC Isotope Ratio Methods -- IV. Isotopic Composition of Bulk Marine DOC -- A. The First Measurements -- B. The First δ 13 C and Δ 14 C Depth Profiles -- C. New Depth Profiles and Spatiotemporal Variability -- D. Mass Balance Constraints on Bulk Δ 14 C Values -- V. Isotopic Composition of DOM Constituents -- A. Characterization by Size Fractions -- B. Characterization by Compounds and Compound Classes -- VI. Summary and Conclusions -- Acknowledgments -- References -- Chapter 7: Reasons Behind the Long-Term Stability of Dissolved Organic Matter -- I. Introduction: The Paradox of DOM Persistence -- II. The Environment Hypothesis -- III. The Intrinsic Stability Hypothesis -- IV. The Molecular Diversity Hypothesis -- V. Concluding Remarks -- Acknowledgments -- References -- Chapter 8: Marine Photochemistry of Organic Matter: Processes and Impacts -- Introduction -- Impact of Photochemistry on Elemental Cycles -- Carbon -- Coupled Photochemical-Microbial DOC Degradation: Impact on Marine Food Web Dynamics -- Photochemical DIC Formation and Oxygen Consumption -- DIC Photoproduction -- DIC Photoproduction and Photochemical Oxygen Consumption, and Mechanisms of DIC Photoformation -- Carbon Monoxide Photoproduction and Transfer to the Atmosphere -- Sulfur -- Dimethylsulphoniopropionate -- Dimethylsulfide -- Dimethylsulfoxide -- Carbonyl Sulfide -- Minor Sulfur Species. , Nitrogen and Phosphorus.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1374–1387, doi:10.1038/ismej.2011.12.
    Beschreibung: Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient oceanic waters, where microbially-dominated food webs are supported largely by bacterioplankton recycling of dissolved compounds. Despite evidence that benthic reef organisms efficiently scavenge particulate organic matter and inorganic nutrients from advected oceanic waters, our understanding of the role of bacterioplankton and dissolved organic matter in the interaction between reefs and the surrounding ocean remains limited. Here we present the results of a four-year study conducted in a well-characterized coral reef ecosystem (Paopao Bay, Moorea, French Polynesia) where changes in bacterioplankton abundance and dissolved organic carbon (DOC) concentrations were quantified and bacterial community structure variation was examined along spatial gradients of the reef:ocean interface. Our results illustrate that the reef is consistently depleted in concentrations of both DOC and bacterioplankton relative to offshore waters (averaging 79 µmol L-1 DOC and 5.5 X 108 cells L-1 offshore and 68 µmol L-1 DOC and 3.1 X 108 cells L-1 over the reef, respectively) across a four year time period. In addition, using a suite of culture-independent measures of bacterial community structure, we found consistent differentiation of reef bacterioplankton communities from those offshore or in a nearby embayment across all taxonomic levels. Reef habitats were enriched in Gamma-, Delta-, and Beta-proteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Specific bacterial phylotypes, including members of the SAR11, SAR116, Flavobacteria, and Synechococcus clades, exhibited clear gradients in relative abundance among nearshore habitats. Our observations indicate that this reef system removes oceanic DOC and exerts selective pressures on bacterioplankton community structure on timescales approximating reef water residence times, observations which are notable both because fringing reefs do not exhibit long residence times (unlike those characteristic of atoll lagoons) and because oceanic DOC is generally recalcitrant to degradation by ambient microbial assemblages. Our findings thus have interesting implications for the role of oceanic DOM and bacterioplankton in the ecology and metabolism of reef ecosystems.
    Beschreibung: This project was supported by the US National Science Foundation Moorea Coral Reef Long Term Ecological Research project (NSF OCE-0417412) through minigrants to CAC and NSF OCE-0927411 to CAC as well as the MIRADA-LTERs program (NSF DEB-0717390 to LAZ).
    Schlagwort(e): Pyrosequencing ; Dissolved organic carbon ; Bacterioplankton ; MIRADA ; Flow cytometry ; Coral reef
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © Oceanography Society, 2009. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 22 no. 4 (2009): 202-211.
    Beschreibung: Containing as much carbon as the atmosphere, marine dissolved organic matter is one of Earth’s major carbon reservoirs. With invigoration of scientific inquiries into the global carbon cycle, our ignorance of its role in ocean biogeochemistry became untenable. Rapid mobilization of relevant research two decades ago required the community to overcome early false leads, but subsequent progress in examining the global dynamics of this material has been steady. Continuous improvements in analytical skill coupled with global ocean hydrographic survey opportunities resulted in the generation of thousands of measurements throughout the major ocean basins. Here, observations and model results provide new insights into the large-scale variability of dissolved organic carbon, its contribution to the biological pump, and its deep ocean sinks.
    Beschreibung: The US National Science Foundation supported this work under grants OCE 0752972 to DAH and CAC, OCE 0751733 and BIO 0792384 to DJR. The Gordon and Betty Moore Foundation also provided support to DJR.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: image/jpeg
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...