GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (2)
Document type
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: We investigated trace element stoichiometries of the nitrogen-fixing marine cyanobacterium Crocosphaera subtropica ATCC51142 under steady-state growth conditions. We utilized exponentially fed batch cultures and varied iron (Fe) concentrations to establish nutrient limitation in C. subtropica growing at a constant growth rate (0.11 d -1 ). No statistical difference in cell density, chlorophyll a , particulate organic carbon (C), nitrogen (N) and phosphorus (P) were observed between consecutive days after Day 14, and cultures were assumed to be at steady state with respect to growth for the remaining 11 d of the experiment. Cultures were limited by P in the highest Fe treatment (41 nmol l -1 ) and by Fe in the 2 lower-concentration Fe treatments (1 and 5 nmol l -1 ). Cell size and in vivo fluorescence changed throughout the experiment in the 1 nmol l -1 Fe treatment, suggesting ongoing acclimation of C. subtropica to our lowest Fe supply. Nevertheless, Fe:C ratios were not significantly different between the Fe treatments, and we calculated an average (±SD) Fe:C ratio of 32 ± 14 µmol mol -1 for growth at 0.11 d -1 . Steady-state P-limited cells had lower P quotas, whilst Fe-limited cells had higher manganese (Mn) and cobalt (Co) quotas. We attribute the increase in Mn and Co quotas at low Fe to a competitive effect resulting from changes in the supply ratio of trace elements. Such an effect has implications for variability in elemental stoichiometry in marine phytoplankton, and potential consequences for trace metal uptake and cycling in marine systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The relevance of considering environmental variability for understanding and predicting biological responses to environmental changes has resulted in a recent surge in variability-focused ecological research. However, integration of findings that emerge across studies and identification of remaining knowledge gaps in aquatic ecosystems remain critical. Here, we address these aspects by: (1) summarizing relevant terms of variability research including the components (characteristics) of variability and key interactions when considering multiple environmental factors; (2) identifying conceptual frameworks for understanding the consequences of environmental variability in single and multifactorial scenarios; (3) highlighting challenges for bridging theoretical and experimental studies involving transitioning from simple to more complex scenarios; (4) proposing improved approaches to overcome current mismatches between theoretical predictions and experimental observations; and (5) providing a guide for designing integrated experiments across multiple scales, degrees of control, and complexity in light of their specific strengths and limitations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...