GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-08-30
    Description: Phytoplankton, microzooplankton, copepod and dissolved nutrient data from a mesocosm experiment, which took place in summer 2016. A range of Si:N ratios and two levels of copepod grazing pressure were manipulated on a natural plankton community in Kiel Bay, Southern Baltic Sea, Germany.
    Keywords: mesocosm; nutrient ratios; Phytoplankton; silicon; stoichiometry; Zooplankton
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-30
    Description: Phytoplankton, microzooplankton, copepod and dissolved nutrient data from a mesocosm experiment, which took place in summer 2016. A range of Si:N ratios and two levels of copepod grazing pressure were manipulated on a natural plankton community in Kiel Bay, Southern Baltic Sea, Germany.
    Keywords: Biomass as carbon per volume; Carbon per cell; DATE/TIME; Experiment day; Functional group; Kiel_Bight_2016; Kieler Bucht; MESO; Mesocosm experiment; Mesocosm label; Plankton; Plankton, biovolume; Species; Treatment; Type; Volume
    Type: Dataset
    Format: text/tab-separated-values, 54060 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-30
    Description: Phytoplankton, microzooplankton, copepod and dissolved nutrient data from a mesocosm experiment, which took place in summer 2016. A range of Si:N ratios and two levels of copepod grazing pressure were manipulated on a natural plankton community in Kiel Bay, Southern Baltic Sea, Germany.
    Keywords: Acartia sp., nauplii; Copepoda; Copepoda, adult; Copepodites; DATE/TIME; Eggs; Eurytemora sp., nauplii; Experiment day; Kiel_Bight_2016; Kieler Bucht; MESO; Mesocosm experiment; Mesocosm label; Nauplii; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 220 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-08-30
    Description: Phytoplankton, microzooplankton, copepod and dissolved nutrient data from a mesocosm experiment, which took place in summer 2016. A range of Si:N ratios and two levels of copepod grazing pressure were manipulated on a natural plankton community in Kiel Bay, Southern Baltic Sea, Germany.
    Keywords: Bacteria; DATE/TIME; Experiment day; Kiel_Bight_2016; Kieler Bucht; MESO; Mesocosm experiment; Mesocosm label; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 900 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-08-30
    Description: Phytoplankton, microzooplankton, copepod and dissolved nutrient data from a mesocosm experiment, which took place in summer 2016. A range of Si:N ratios and two levels of copepod grazing pressure were manipulated on a natural plankton community in Kiel Bay, Southern Baltic Sea, Germany.
    Keywords: Ammonium; DATE/TIME; Experiment day; Kiel_Bight_2016; Kieler Bucht; MESO; Mesocosm experiment; Mesocosm label; Nitrate; Nitrate and Nitrite; Nitrite; Nitrogen, total; Phosphate; Silicate; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 1980 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-09
    Description: Despite management efforts, anthropogenic nutrient enrichments continue to enhance phytoplankton blooms worldwide. Release of nitrogen and phosphorus compounds not only provides surplus of nutrients but also disbalances their stoichiometry. Declines in the relative availability of dissolved silicon might induce limitation in diatoms, major primary producers with silicified shells. We studied experimentally how nutrient enrichment and resulting decline in dissolved silicon to nitrogen ratios (Si:N) affect the structure and functioning of natural plankton communities. Nitrate was added to create a range of Si:N ratios and phosphate was supplied in Redfield ratio to nitrogen. We also manipulated copepod abundance to understand the top-down effects on communities experiencing nutrient enrichment. Nitrogen and phosphorus additions resulted in a steep phytoplankton biomass increase, followed by a post-bloom decline. Phytoplankton bloom biomass was higher in high nitrogen treatments but during the post-bloom period this trend switched. Biomass was sustained longer in high Si:N treatments, indicating that silicon limitation terminates the bloom. Many diatom species did not benefit from nitrogen and phosphorus enrichment and diatom dominance ceased below Si:N of 0.4:1. Under high grazing pressure, silicate was taken up faster suggesting that silicification is important in diatom defense. Copepods shaped plankton communities via feeding on dinoflagellates, chlorophytes and the diatom Skeletonema costatum but there was no significant effect of nitrogen and phosphorus enrichment on copepod abundance. Our results, combined with previous studies, show that while nutrient concentrations define the total phytoplankton bloom biomass, resource ratios are important in sustaining biomass and determining community structure and composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Considerable effort is being deployed to predict the impacts of climate change and anthropogenic activities on the ocean's biophysical environment, biodiversity, and natural resources to better understand how marine ecosystems and provided services to humans are likely to change and explore alternative pathways and options. We present an updated version of EcoOcean (v2), a spatial-temporal ecosystem modeling complex of the global ocean that spans food-web dynamics from primary producers to top predators. Advancements include an enhanced ability to reproduce spatial-temporal ecosystem dynamics by linking species productivity, distributions, and trophic interactions to the impacts of climate change and worldwide fisheries. The updated modeling platform is used to simulate past and future scenarios of change, where we quantify the impacts of alternative configurations of the ecological model, responses to climate-change scenarios, and the additional impacts of fishing. Climate-change scenarios are obtained from two Earth-System Models (ESMs, GFDL-ESM2M, and IPSL-CMA5-LR) and two contrasting emission pathways (RCPs 2.6 and 8.5) for historical (1950-2005) and future (2006-2100) periods. Standardized ecological indicators and biomasses of selected species groups are used to compare simulations. Results show how future ecological trajectories are sensitive to alternative configurations of EcoOcean, and yield moderate differences when looking at ecological indicators and larger differences for biomasses of species groups. Ecological trajectories are also sensitive to environmental drivers from alternative ESM outputs and RCPs, and show spatial variability and more severe changes when IPSL and RCP 8.5 are used. Under a non-fishing configuration, larger organisms show decreasing trends, while smaller organisms show mixed or increasing results. Fishing intensifies the negative effects predicted by climate change, again stronger under IPSL and RCP 8.5, which results in stronger biomass declines for species already losing under climate change, or dampened positive impacts for those increasing. Several species groups that win under climate change become losers under combined impacts, while only a few (small benthopelagic fish and cephalopods) species are projected to show positive biomass changes under cumulative impacts. EcoOcean v2 can contribute to the quantification of cumulative impact assessments of multiple stressors and of plausible ocean-based solutions to prevent, mitigate and adapt to global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Many coastal oceans experience not only increased loads of nutrients but also changes in the stoichiometry of nutrient supply. Excess supply of nitrogen and stable or decreased supply of silicon lower silicon to nitrogen (Si:N) ratios, which may decrease diatom proportion in phytoplankton. To examine how Si:N ratios affect plankton community composition and food web structure, we performed a mesocosm experiment where we manipulated Si:N ratios and copepod abundance in a Baltic Sea plankton community. In high Si:N treatments, diatoms dominated. Some of them were likely spared from grazing unexpectedly resulting in higher diatom biomass under high copepod grazing. With declining Si:N ratios, dinoflagellates became more abundant under low and picoplankton under high copepod grazing. This altered plankton food web structure: under high Si:N ratios, edible diatoms were directly accessible food for copepods, while under low Si:N ratios, microzooplankton and phago-mixotrophs (mixoplankton) were a more important food source for mesograzers. The response of copepods to changes in the phytoplankton community was complex and copepod density-dependent. We suggest that declining Si:N ratios favor microzoo- and mixoplankton leading to increased complexity of planktonic food webs. Consequences on higher trophic levels will, however, likely be moderated by edibility, nutritional value or toxicity of dominant phytoplankton species.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2024-02-07
    Description: Diatoms often dominate phytoplankton in temperate, polar and upwelling regions. Decreases in silicate availability or silicon to nitrogen (Si:N) ratios may induce silicon limitation in diatoms and lower their proportion within phytoplankton communities. The effects of such changes on the nutritional quality of phytoplankton are not well understood. To examine how changing Si:N ratios affect plankton nutritional value, we applied a range of Si:N ratios on a natural plankton community and manipulated grazing pressure to assess top-down effects of copepod selective grazing. Diatom proportion in phytoplankton increased with increasing Si:N ratios and so did phytoplankton nutritional quality in terms of major fatty acid concentrations, such as polyunsaturated fatty acids, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids. However, stoichiometric quality (carbon to nitrogen and carbon to phosphorus ratios), DHA:EPA and omega 3:6 (omega 3:omega 6) ratios declined with increasing Si:N ratios, suggesting that proportions between essential compounds in copepod diet may be more favorable in lowered Si:N ratios. Copepods had a negative effect on DHA contents, DHA:EPA and omega 3:omega 6 ratios, indicating possible selective grazing on more nutritious plankton. Our findings show that declining silicate concentrations can affect stoichiometric and biochemical quality of phytoplankton, which copepods can also moderate by selective grazing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...