GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2020-2023  (2)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2022-05-18
    Beschreibung: We present a record of melt events obtained from the East Greenland Ice Core Project (EastGRIP) ice core in central northeastern Greenland, covering the largest part of the Holocene. The data were acquired visually using an optical dark-field line scanner. We detect and describe melt layers and lenses, seen as bubble-free layers and lenses, throughout the ice above the bubble–clathrate transition. This transition is located at 1150 m depth in the EastGRIP ice core, corresponding to an age of 9720 years b2k. We define the brittle zone in the EastGRIP ice core as that from 650 to 950 m depth, where we count on average more than three core breaks per meter. We analyze melt layer thicknesses, correct for ice thinning, and account for missing layers due to core breaks. Our record of melt events shows a large, distinct peak around 1014 years b2k (986 CE) and a broad peak around 7000 years b2k, corresponding to the Holocene Climatic Optimum. In total, we can identify approximately 831 mm of melt (corrected for thinning) over the past 10 000 years. We find that the melt event from 986 CE is most likely a large rain event similar to that from 2012 CE, and that these two events are unprecedented throughout the Holocene. We also compare the most recent 2500 years to a tree ring composite and find an overlap between melt events and tree ring anomalies indicating warm summers. Considering the ice dynamics of the EastGRIP site resulting from the flow of the Northeast Greenland Ice Stream (NEGIS), we find that summer temperatures must have been at least 3 ± 0.6 ∘C warmer during the Early Holocene compared to today.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-06-15
    Beschreibung: Ever since the first deep ice cores were drilled, it has been a challenge to determine their original, in-situ orientation. In general, the orientation of an ice core is lost as the drill is free to rotate during transport to the surface. For shallow ice cores, it is usually possible to match the adjacent core breaks, which preserves the orientation of the ice column. However, this method fails for deep ice cores, such as the EastGRIP ice core in Northeast Greenland. We provide a method to reconstruct ice core orientation using visual stratigraphy and borehole geometry. As the EastGRIP ice core is drilled through the Northeast Greenland Ice Stream, we use information about the directional structures to perform a full geographical re-orientation. We compared the core orientation with logging data from core break matching and the pattern of the stereographic projections of the crystals’ c-axis orientations. Both comparisons agree very well with the proposed orientation method. The method works well for 441 out of 451 samples from a depth of 1375–2120 m in the EastGRIP ice core. It can also be applied to other ice cores, providing a better foundation for interpreting physical properties and understanding the flow of ice.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...