GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (10)
Document type
Years
Year
  • 1
    Publication Date: 2022-04-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-04
    Description: We investigated sediments from three different depositional environments along the northern Argentine continental margin to assess the main processes controlling sediment deposition since the last glacial period. Further, we evaluated how different depositional conditions affect (bio)geochemical processes within sediments. Sediment cores were collected during expedition SO260 in 2018[1]. Two sites are located at ~1100 m water depth north and south of the Mar del Plata Canyon (N- and S-Middle Slope Site). Another site is situated at the lower continental slope at 3600 m water depth (Lower Slope Site). Reliable age constraints of sediments deposited during the last glaciation at the Argentine margin are difficult to obtain due limited amounts of carbonate. We overcame this issue by combining radio-isotope analyses (14C,230Thex) with sedimentological, geochemical and magnetic data demonstrating that all sites experienced distinct changes over time. Both, N- and S-Middle Slope Sites, record at least the last 30 ka. The S-Middle Slope Site is dominated by continuously organic carbon-starved and winnowed sandy deposits, which according to geochemical and magnetic data leads to insignificant sulfate reduction and sulfidation of iron (oxyhydr)oxides. Glacial sedimentation rates at the Middle Slope increase northwards suggesting a decrease in bottom-current strength. The N-Middle Slope Site records a transition from the last glacial period, dominated by organic carbon-starved sands, to the early deglacial period when mainly silty and organic carbon-rich sediments were deposited between 14-15 ka BP. Concurrently, glacial sedimentation rates of ~50 cm/ka significantly increased to 120 cm/ka. We propose that this high sedimentation rate relates to lateral sediment re-deposition by current-driven focusing as response to sea level rise. Towards the Holocene, sedimentation rates strongly decreased to 8 cm/ka. We propose that the distinct decrease in sedimentation rates and change in organic carbon contents observed at the N-Middle Slope Site caused the nonsteady-state pore-water conditions and deep sulfate-methane-transition (SMT) at 750 cm core depth. The Lower Slope Site records the last 19 ka. Continuously high terrigenous sediment input (~100 cm/ka) prevailed during the Deglacial, while sedimentation rates distinctly decreased to ~13 cm/ka in the Holocene. Here, pore-water data suggest current steady-state conditions with a pronounced SMT at 510 cm core depth. Our study confirms previous geochemical-modelling studies at the lower slope, which implied that the observed SMT fixation for ~9 ka at specific depth relates to a strong decrease in sedimentation rates at the Pleistocene/Holocene transition[2]. During the Holocene, total organic and inorganic carbon contents, inorganic carbon mass accumulation rates and XRF Si/Al ratios (preserved diatom flux) increase at our sites. We relate this to increased primary production in surface waters and less terrigenous input along the continental margin. Our multidisciplinary approach presents improved age constraints at the northern Argentine Margin and demonstrates that lateral/vertical sediment transport and deposition was strongly linked to Glacial/Interglacial variations in bottom currents, seafloor morphology, sea level and sediment supply. The dynamic depositional histories at the three sites still exert a significant control on modern sedimentary (bio)geochemical processes. [1]Kasten et al. (2019). Cruise No. SO260. Sonne-Berichte. [2]Riedinger et al. (2005). Geochim. Cosmochim. Acta. 69.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3SPP Antarctic Research Coordination Workshop 2022, Bielefeld, 2022-09-11-2022-09-13
    Publication Date: 2022-10-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-04
    Description: Biogeochemical processes in subseafloor sediments can notably change over geological timescales due to variations in oceanographic, climatic and/or depositional conditions. To improve the understanding of changing biogeochemical processes on longer timescales, we investigated ~1.2 km deep and up to 120°C hot subseafloor sediments from the Nankai Trough offshore Japan (Site C0023), drilled during International Ocean Discovery Program Expedition 370 (Temperature Limit of the Deep Biosphere off Muroto)1. Over the past 15 Ma, the sediments have moved several hundreds of kilometers from the Shikoku Basin to the Nankai Trough due to tectonic motion of the Philippine Sea plate2. During this migration, the depositional, geochemical and thermal conditions have significantly changed. By combining geochemical data, sedimentation rates and reactive transport modeling, we reconstructed the evolution of biogeochemical processes in sediments at Site C0023. A distinctive feature at Site C0023 is an inverse sulfate-methane transition (SMT) at ~730 m depth with a broad sulfate-methane overlap zone of ~100 m, suggesting inefficient anaerobic oxidation of methane (AOM). This depth interval corresponds to a temperature of 80° to 85°C, which coincides with the known temperature limit of AOM-performing microbial communities3,4. Our model results demonstrate that the inverse SMT was formed at ~2.5 Ma after the onset of biogenic methanogenesis and AOM as a consequence of enhanced organic carbon burial. Depth-integrated AOM rates derived from the model markedly decrease since the beginning of trench-style deposition and the associated rapid heating of the sediments at ~0.4 Ma, indicating that the microbial activity of AOM-performing communities at the inverse SMT has already started to cease and the SMT is about to disappear. This successive fading of the SMT and, thus, a decrease in the efficiency of the microbial methane sink is ultimately related to the temperature increase beyond the threshold of being suitable for AOM-performing microbial communities. 1Heuer et al., (2017), In Proc. IODP Volume 370. 2Mahony et al., (2011), GSA Bulletin 123, 2201-2223. 3Holler et al., (2011), ISME J 5, 1946-1956. 4Biddle et al., (2012), ISME J 6, 1018-1031.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-29
    Description: Rapid and profound climatic and environmental changes have been predicted for the Antarctic Peninsula with so far unknown impact on the biogeochemistry of the continental shelves. In this study, we investigate benthic carbon sedimentation, remineralization and iron cycling using sediment cores retrieved on a 400 mile transect with contrasting sea ice conditions along the eastern shelf of the Antarctic Peninsula. Sediments at comparable water depths of 330-450 m showed sedimentation and remineralization rates of organic carbon, ranging from 2.5-13 and 1.8-7.2 mmol C m-2 d-1, respectively. Both rates were positively correlated with the occurrence of marginal sea ice conditions (5-35% ice cover) along the transect, suggesting a favorable influence of the corresponding light regime and water column stratification on algae growth and sedimentation rates. From south to north, the burial efficiency of organic carbon decreased from 58% to 27%, while bottom water temperatures increased from -1.9 to -0.1 °C. Net iron reduction rates, as estimated from pore-water profiles of dissolved iron, were significantly correlated with carbon degradation rates and contributed 0.7-1.2% to the total organic carbon remineralization. Tightly coupled phosphate-iron recycling was indicated by significant covariation of dissolved iron and phosphate concentrations, which almost consistently exhibited P/Fe flux ratios of 0.26. Iron efflux into bottom waters of 0.6-4.5 µmol Fe m-2 d-1 was estimated from an empirical model. Despite the deep shelf waters, a clear bentho-pelagic coupling is indicated, shaped by the extent and duration of marginal sea ice conditions during summer, and likely to be affected by future climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-06-29
    Description: The area around the Antarctic Peninsula is projected to undergo rapid climatic changes affecting seasonal sea ice cover, water column stratification, terrestrial meltwater run-off, and related nutrient input and thus the conditions for primary production and organic carbon export. The impact of such environmental changes on benthic microbial communities is poorly understood. In this study, we investigated the impact of different sea ice cover and redox conditions on microbial community compositions from 7 different stations (330–450 m water depth) along a 400-mile transect from the eastern shelf of the Antarctic Peninsula to the west of the South Orkney Islands. Two deep stations (3000 m depth) were sampled for comparison. Samples were collected from 6 different intervals down to a depth of 16 cm. The diversity and composition of microbial communities were determined by 16S ribosomal RNA (rRNA) gene sequencing. Redox conditions in sediments with long ice-free periods showed that iron and sulfate reduction are dominant anaerobic pathways for carbon mineralization. In contrast, sediments at a heavily ice-covered station were dominated by the aerobic pathway, which accounted for 〉94 % of the total carbon degradation. Our results reveal that the microbial community composition at the station under heavy ice-cover differs significantly from stations under low ice-cover and tends to cluster separately, suggesting that sea ice cover is the main driver for changes in microbial community composition in the shelf sediments. Further, the frequency of marginal sea ice conditions (here defined as 5-35% sea ice cover) is significantly different between stations (p 0.001) and can explain 5 to 13% of the variation between microbial communities. The bacterial communities at stations under low ice-cover co-varied significantly with TOC content and porewater concentrations of ammonia, dissolved iron, and sulfide. This was reflected in the microbial community composition, where stations with low ice-cover were dominated by Desulfuromonadia, a taxon including many iron and sulfate reducers. At the station with heavy ice-cover, this class showed very low abundances. Our findings demonstrate that the benthic microbial composition and mediated-processes at various sites around the eastern Antarctic Peninsula are regulated by sea ice cover.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3Goldschmidt Conference 2022, Honolulu, USA, 2022-07-11-2022-07-15
    Publication Date: 2022-09-03
    Description: The Polar Southern Ocean (PSO) provides an excess amount of macro-nutrients but productivity is largely limited by the availability of essential micro-nutrients, namely iron, manganese, zinc and others. Seasonal patches of increased productivity off major ice shelfs around Antarctica suggest that local sources of these deficient micro-nutrients must be present. With this session contribution we present a new study on marine ice from the Filchner-Ronne Ice Shelf (FRIS) as a potential source of iron and other limiting micro-nutrients for the Atlantic sector of the PSO. Marine ice is formed via partial melting of meteoric shelf ice near the grounding line of large ice shelves (e.g. FRIS). During this process small refrozen ice platelets accumulate in a layer of over 100 m thickness underneath the ice shelf to form marine ice containing high amounts of particulate material. In a project funded by the German Research Foundation (DFG) within the priority program SPP1158, we analyse 2 marine ice cores (B13: 62m, B15: 167m of marine ice) recovered in the 1990’s from the FRIS on their geochemical compositions. The coring location of B13 was about 40 km away from the shelf ice edge and B15 was drilled another 136 km further inland along the reconstructed flow line of B13. Due to shelf ice migration over the last 30 years, their locations have shifted about 30 km towards the shelf ice edge. First results show dissolved Fe (dFe) and Mn (dMn) concentrations ranging between 30 and 300 nMol and particulate Fe (pFe) of 20 to 120 µMol (0.2 to 1.4 µMol for pMn). These concentrations are orders of magnitude higher than the ones currently found in the PSO for those elements. Basal melting and ice-berg calving of marine ice with the accompanied release of these essential trace metals could therefore fuel local productivity in regions with large extent of shelf ice. With our study we aim to evaluate marine ice as potentially overlooked source for limiting micro-nutrients that could explain high productivity areas within an otherwise relatively low productive PSO.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-08-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus GmbH
    In:  EPIC3Copernicus GmbH
    Publication Date: 2022-11-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...