GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (4)
  • 2001  (4)
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Ocean circulation. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (737 pages)
    Edition: 1st ed.
    ISBN: 9780080491974
    Series Statement: Issn Series ; v.Volume 103
    DDC: 551.47
    Language: English
    Note: Cover -- Copyright Page -- Contents -- Contributors -- Foreword -- Preface -- Acknowledgment -- Section 1: The Ocean and Climate -- Chapter 1.1. Climate and Oceans -- 1.1.1 WOCE and the World Climate Research Programme -- 1.1.2 The scientific approach to the complex climate system -- 1.1.3 Ocean-atmosphere interaction and climate -- 1.1.4 Rapid changes related to the oceans -- 1.1.5 Cryosphere and the oceans -- 1.1.6 Anthropogenic climate change and the oceans -- 1.1.7 Future climate research and ocean observing systems -- Chapter 1.2. Ocean Processes and Climate Phenomena -- 1.2.1 A global perspective -- 1.2.2 Air-sea fluxes -- 1.2.3 Ocean storage of heat and fresh water -- 1.2.4 Ocean circulation -- 1.2.5 Ocean transport of heat, fresh water and carbon -- 1.2.6 Climatic and oceanic variability -- 1.2.7 Impacts of ocean climate -- 1.2.8 Conclusion -- Chapter 1.3. The Origins, Development and Conduct of WOCE -- 1.3.1 Introduction -- 1.3.2 Large-scale oceanography in the 1960s and 1970s -- 1.3.3 Ocean research and climate -- 1.3.4 Implementation of WOCE (SSG initiatives) -- 1.3.5 Implementation and oversight -- 1.3.6 Was WOCE a success and what is its legacy? -- Section 2: Observations and Models -- Chapter 2.1. Global Problems and Global Observations -- 2.1.1 Different views of the ocean -- 2.1.2 The origins of WOCE -- 2.1.3 What do we know? -- 2.1.4 The need for global-scale observations -- 2.1.5 Where do we go from here? -- Chapter 2.2. High-Resolution Modelling of the Thermohaline and Wind-Driven Circulation -- 2.2.1 The improving realism of ocean models -- 2.2.2 Historical perspective -- 2.2.3 Basic model design considerations: equilibrium versus non-equilibrium solutions -- 2.2.4 Examples of model behaviour in different dynamical regimes -- 2.2.5 Concluding remarks -- Chapter 2.3. Coupled Ocean-Atmosphere Models -- 2.3.1 Why coupled models?. , 2.3.2 Formulation of coupled models -- 2.3.3 Model drift and flux adjustment -- 2.3.4 Initialization of coupled models -- 2.3.5 Coupled model simulation of present and past climates -- 2.3.6 Coupled model simulation of future climates -- 2.3.7 Climate models, WOCE and future observations -- 2.3.8 Summary and future developments -- Section 3: New Ways of Observing the Ocean -- Chapter 3.1. Shipboard Observations during WOCE -- 3.1.1 The role of hydrographic measurements -- 3.1.2 CTD and sample measurements -- 3.1.3 Current measurements in the shipboard hydrographic programme -- 3.1.4 Shipboard meteorology -- 3.1.5 Summary and conclusions -- Chapter 3.2. Subsurface Lagrangian Observations during the 1990s -- 3.2.1 Determining currents in the ocean -- 3.2.2 Historical aspects: Stommel's -- 3.2.3 The WOCE Float Programme -- 3.2.4 WOCE float observations -- 3.2.5 The future -- Chapter 3.3. Ocean Circulation and Variability from Satellite Altimetry -- 3.3.1 Altimeter observations -- 3.3.2 The ocean general circulation -- 3.3.3 Large-scale sea-level variability -- 3.3.4 Currents and eddies -- 3.3.5 Concluding discussions -- Chapter 3.4. Air-Sea Fluxes from Satellite Data -- 3.4.1 Forcing the ocean -- 3.4.2 Bulk parameterization -- 3.4.3 Wind forcing -- 3.4.4 Thermal forcing -- 3.4.5 Hydrologic forcing -- 3.4.6 Future prospects -- Chapter 3.5. Developing the WOCE Global Data System -- 3.5.1 Organization and planning for WOCE data systems -- 3.5.2 Elements of the WOCE Data System -- 3.5.3 The WOCE Global Data Set and future developments -- Section 4: The Global Flow Field -- Chapter 4.1. The World Ocean Surface Circulation -- 4.1.1 Background -- 4.1.2 Methodology -- 4.1.3 The global mean velocity and velocity variance -- 4.1.4 The wind-driven Ekman currents -- 4.1.5 Future global circulation observations -- Chapter 4.2. The Interior Circulation of the Ocean. , 4.2.1 Processes in the ocean interior -- 4.2.2 Observational evidence -- 4.2.3 Theory of gyre-scale circulation -- 4.2.4 The abyssal circulation -- 4.2.5 Conclusions -- Chapter 4.3. The Tropical Ocean Circulation -- 4.3.1 Flow and water mass transformation patterns -- 4.3.2 Equatorial phenomena in the Pacific Ocean -- 4.3.3 Equatorial Atlantic -- 4.3.4 Near-equatorial circulation in the Indian Ocean -- 4.3.5 Overall conclusions -- Chapter 4.4. Tropical-Extratropical Oceanic Exchange Pathways -- 4.4.1 The role of diffusion and advection -- 4.4.2 Tropical-subtropical exchanges of thermocline waters -- 4.4.3 Tropical-subpolar exchange of Intermediate Waters -- 4.4.4 Summary and further issues -- Chapter 4.5. Quantification of the Deep Circulation -- 4.5.1 Deep circulation in the framework of WOCE -- 4.5.2 Deep Western Boundary Currents -- 4.5.3 The interior: The Deep Basin Experiment -- 4.5.4 Summary -- Chapter 4.6. The Antarctic Circumpolar Current System -- 4.6.1 Flow in the zonally unbounded ocean -- 4.6.2 Observations of the Antarctic Circumpolar Current -- 4.6.3 Dynamics of the ACC -- 4.6.4 Water mass formation and conversion -- 4.6.5 The Southern Ocean and the global overturning circulations -- 4.6.6 Conclusions -- Chapter 4.7. Interocean Exchange -- 4.7.1 Interocean links -- 4.7.2 Bering Strait -- 4.7.3 Indonesian Seas -- 4.7.4 The Agulhas Retroflection -- 4.7.5 Discussion -- Section 5: Formation and Transport of Water Masses -- Chapter 5.1. Ocean Surface Water Mass Transformation -- 5.1.1 The problem -- 5.1.2 Theory of surface water mass transformation -- 5.1.3 Ocean surface temperature, salinity and density -- 5.1.4 Surface fluxes of heat, fresh water and density -- 5.1.5 Surface water mass transformation and formation -- 5.1.6 Summary -- Chapter 5.2. Mixing and Stirring in the Ocean Interior -- 5.2.1 Scales of mixing and stirring. , 5.2.2 Background -- 5.2.3 The Temporal-Residual-Mean circulation -- 5.2.4 Lateral dispersion between the mesoscale and the microscale -- 5.2.5 Diapycnal mixing in and above the main thermocline -- 5.2.6 Mixing in the abyss -- 5.2.7 Discussion -- Chapter 5.3. Subduction -- 5.3.1 A little of the background on oceanic subduction -- 5.3.2 Surface-layer dynamics and thermodynamics of the subduction process -- 5.3.3 Development of steady, continuous models: Application to numerical model analysis and observations -- 5.3.4 Transient response of the thermocline to decadal variability -- 5.3.5 Summary and outlook -- Chapter 5.4. Mode Waters -- 5.4.1 Ventilation and mode water generation -- 5.4.2 Definition, detection and general characteristics of mode waters -- 5.4.3 Geographical distribution of mixed-layer depth and mode waters in the world's oceans -- 5.4.4 Temporal variability of mode water properties and distribution -- 5.4.5 Summary -- Chapter 5.5. Deep Convection -- 5.5.1 Convection and spreading -- 5.5.2 Plumes - the mixing agent -- 5.5.3 Temperature and salinity variability -- 5.5.4 Restratification -- 5.5.5 Summary and discussion -- Chapter 5.6. The Dense Northern Overflows -- 5.6.1 The sources -- 5.6.2 Overflow paths -- 5.6.3 Observed transport means and variability -- 5.6.4 Processes in the overflows -- 5.6.5 Analytical models of the overflow -- 5.6.6 Numerical models of the overflow -- 5.6.7 Overflow variability -- 5.6.8 What have we learnt in WOCE? -- Chapter 5.7. Mediterranean Water and Global Circulation -- 5.7.1 Marginal seas -- 5.7.2 Formation of Mediterranean Water -- 5.7.3 Outflow of Mediterranean Water at the Strait of Gibraltar -- 5.7.4 The effect of Mediterranean Water outflow on the circulation of the North Atlantic and the World Oceans -- Chapter 5.8. Transformation and Age of Water Masses -- 5.8.1 Background. , 5.8.2 Tracer methodology and techniques -- 5.8.3 Exemplary results -- 5.8.4 Outlook -- Section 6: Large-Scale Ocean Transports -- Chapter 6.1. Ocean Heat Transport -- 6.1.1 The global heat balance -- 6.1.2 Bulk formula estimates of ocean heat transport -- 6.1.3 Residual method estimates of ocean heat transport -- 6.1.4 Direct estimates of ocean heat transport -- 6.1.5 Discussion -- 6.1.6 Challenges -- 6.1.7 Summary -- 6.1.8 Outlook for direct estimates of ocean heat transport -- Chapter 6.2. Ocean Transport of Fresh Water -- 6.2.1 The importance of freshwater transport -- 6.2.2 Indirect estimates of oceanic freshwater transport -- 6.2.3 Impacts of uncertainties on model development -- 6.2.4 Direct ocean estimates of freshwater transport -- 6.2.5 Comparison of direct and indirect flux estimates -- 6.2.6 Mechanisms of oceanic freshwater transport -- 6.2.7 Global budgets -- 6.2.8 Summary -- Chapter 6.3. Storage and Transport of Excess CO2 in the Oceans: The JGOFS/WOCE Global CO2 Survey -- 6.3.1 Introduction -- 6.3.2 Background -- 6.3.3 The JGOFS/WOCE Global CO2 Survey -- 6.3.4 Synthesis of Global CO2 Survey data: Review -- 6.3.5 Conclusions and outlook -- Section 7: Insights for the Future -- Chapter 7.1. Towards a WOCE Synthesis -- 7.1.1 Exploiting the WOCE data set -- 7.1.2 Data-based analyses -- 7.1.3 Model evaluation and development -- 7.1.4 Ocean state estimation -- 7.1.5 Summary and outlook -- Chapter 7.2. Numerical Ocean Circulation Modelling: Present Status and Future Directions -- 7.2.1 Remarks on the history of ocean modelling -- 7.2.2 Space-time scales of ocean processes and models -- 7.2.3 Modelling issues -- 7.2.4 Atmospheric forcing and coupling -- 7.2.5 Organization of model development -- 7.2.6 Concluding remarks -- Chapter 7.3. The World during WOCE -- 7.3.1 Assessing the representativeness of the WOCE data set. , 7.3.2 The state of the atmosphere during WOCE.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    de Gruyter
    In:  In: Bergmann-Schäfer, Lehrbuch der Experimentalphysik. , ed. by Raith, W. de Gruyter, Berlin, pp. 53-130. 2
    Publication Date: 2012-07-13
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Academic Press
    In:  Academic Press, San Diego, USA; London, UK, 715 pp. ISBN 0-12-641351-7
    Publication Date: 2020-03-25
    Type: Book , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 31 . pp. 5-29.
    Publication Date: 2018-04-06
    Description: Meridional transports of mass, heat, nutrients, and carbon across coast-to-coast WOCE and pre-WOCE sections between 11°S and 45°S in the South Atlantic are calculated using an inverse model. Usually salt preservation is used as a condition in the inverse model, and only in the case of heat transport the condition of zero total mass transport is taken instead. Other constraints include silica conservation, prescribed southward fluxes of salt and phosphate, and transports in the southward Brazil Current and in the northward Antarctic Bottom Water flow obtained from WOCE moored current meter arrays. The constraints set the underdetermined system of linear equations of the inverse model whose solutions depend on weights, scales, and matrix ranks. The discussion emphasizes the sensitivity of the fluxes to changes in the model input. The transports given in the following are obtained as the means of “reasonable” solutions at 30°S. The error numbers in parentheses include uncertainties due to wind stress and temporal variability, the numbers without parentheses do not contain these terms:0.53 ± 0.03 (0.09) Tg s−1 mass to the south, 0.29 ± 0.05 (0.24) PW heat to the north, 15 ± 120 (500) kmol s−1 oxygen to the south, 121 ± 22 (75) kmol s−1 nitrate to the south, 64 ± 110 (300) silica to the north, and 1997 ± 215 (600) kmol s−1 dissolved inorganic carbon to the south. The above errors in transports are obviously dominated by uncertainties in wind stress and temporal variability. The divergence in meridional heat and mass transport is consistent with integral surface flux changes between corresponding zonal bands. The mass compensation of southward flowing North Atlantic Deep Water occurs to a greater extent in the warm surface waters than in the Antarctic Intermediate Water below. If one follows the arguments of earlier authors on the relation between meridional fluxes and the significance of the two possible pathways for the global thermohaline circulation, the warm water path south of Africa seems to be somewhat more important than the cold water path through Drake Passage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...