GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have investigated the photodissociation of FNO in the first absorption band (S0→S1) by a two-dimensional wave packet study based on an ab initio potential energy surface. The quantum chemical calculations were performed in the multiconfiguration self-consistent field (MCSCF) approach including the N–O and the F–NO bond distances with the FNO bond angle being fixed. The most striking feature of the time-dependent dynamical analysis is a bifurcation of the wave packet near the Franck–Condon point: while one part of the wave packet leaves the inner region of the potential energy surface very rapidly, a second part remains trapped for several periods in an extremely shallow well at short F–NO distances. The direct part leads to a broad background in the absorption spectrum while the trapped portion of the wave packet gives rise to relatively narrow resonances, i.e., well resolved diffuse vibrational structures. The bandwidth decreases with the degree of internal excitation. The calculated spectrum agrees well with the measured one.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We study experimentally and theoretically reflection-type structures in the rotational distributions of NO following the photodissociation of FNO via excitation of the S1 state. Exciting quasibound states with zero quanta of bending vibration in the FNO(S1) state yields Gaussian-type rotational distributions, while excitation of states with one bending quantum leads to bimodal distributions. In the latter case, the ratio of the two intensity maxima depends on the number of NO stretching quanta in the S1 state. The accompanying calculations employing a three-dimensional ab initio potential energy surface for the S1 state of FNO are performed in the time-dependent wave packet approach. They reproduce the main features of the experimental distributions, especially the bimodality. The analysis of two-dimensional calculations for a frozen NO bond distance shows that the final rotational state distributions can be explained as the result of a dynamical mapping of the stationary wave function on the transition line onto the fragment rotational quantum number axis. Here the transition line is defined as the line which separates the inner part of the FNO(S1) potential energy surface from the strongly repulsive F+NO product channel.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present a theoretical and experimental investigation of the emission spectrum of dissociating water after excitation in the second absorption band (X˜ 1A1→B˜ 1A1). The calculations are performed in the time-dependent wave packet formalism employing an ab initio potential energy surface. All three degrees of freedom (the two OH stretching modes and the HOH bending mode) are taken into account. The B˜ 1A1 potential energy surface depends strongly on the HOH bending angle which leads to very fast opening of this angle after the water molecule is promoted to the excited electronic state. As a consequence, we observe, both experimentally and theoretically, the excitation of high bending states in the X˜ ground state. According to the wave packet study the emission spectrum is determined in the first ten femtoseconds of the motion in the excited state. The agreement with the measured spectrum for an excitation wavelength of 141.2 nm is good.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 101 (1994), S. 2051-2068 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present a quantum mechanical wave packet study for the unimolecular dissociation of a triatomic molecule into an atom and a diatom. The 3D potential energy surface used in the dynamics calculations is that of the B˜ state of water corresponding to the second absorption band. Both OH stretching coordinates and the bending angle are included. What is not taken into account is the strong nonadiabatic coupling to the lower-lying A˜ and X˜ states which in reality drastically shortens the lifetime in the B˜ state. For this reason the present study is not a realistic account of the dissociation dynamics of water in the 122 nm band. It is, however, a representational investigation of a unimolecular reaction evolving on a realistic potential energy surface without barrier. The main focus is the resonance structure of the absorption spectrum and the final rotational state distributions of the OH fragment. The total absorption spectrum as well as the partial dissociation cross sections for individual rotational states of OH show drastic fluctuations caused by overlapping resonances. The widths of the individual resonances increase, on average, with the excess energy which has the consequence that the cross sections become gradually smoother. Although the low-energy part of the spectrum is rather irregular, it shows "clumps'' of resonances with an uniform spacing of ∼0.1 eV. They are discussed in the context of IVR and a particular unstable periodic orbit. In accordance with the fluctuations in the partial dissociation cross sections as functions of the excess energy the final rotational state distributions show pronounced, randomlike fluctuations which are extremely sensitive on the energy.The average is given by the statistical limit (PST), in which all levels are populated with equal probability. With increasing excess energy the distributions more and more exhibit dynamical features which are reminiscent of direct dissociation like rainbows and associated interferences. Classical trajectories for small excess energies are chaotic, as tested by means of the rotational excitation function, but become gradually more regular with increasing energy. Our wave packet calculations hence demonstrate how the transition from the chaotic to the regular regime shows up in a fully quantum mechanical treatment. The results of the present investigation are in qualitative accord with recent measurements for the unimolecular dissociation of NO2.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 2315-2325 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Detailed results of the converged full-dimensional 6D quantum calculations of the vibrational levels of (HF)2, (DF)2, and HFDF, for total angular momentum J=0, are presented. The ab initio 6D potential energy surface by Quack and Suhm was employed. This study provides a comprehensive description of the bound state properties of the HF dimer and its isotopomers, including their dissociation energies, frequencies of the intermolecular vibrations, tunneling splittings, and extent of wave function delocalization. Quantum number assignment of the calculated eigenstates by plotting different cuts through the wave functions worked rather well for (HF)2, but proved to be much harder for (DF)2 and HFDF, indicating stronger vibrational mode mixing in these species. The ground-state tunneling splitting for the HF dimer from our exact 6D calculations, 0.44 cm−1, is very close to that from a previous 4D rigid-rotor calculation, 0.48 cm−1 [J. Chem. Phys. 99, 6624 (1993)]. This is in disagreement with the result of a recent 6D bound state calculation for (HF)2 by Necoechea and Truhlar, which gave a ground-state tunneling splitting a factor of 3.7 times larger than the 4D result. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 7070-7079 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present three-dimensional wave packet calculations for the photodissociation of FNO in the first excited singlet state S1 using a new ab initio potential surface. While the calculated absorption spectrum agrees satisfactorily with the measured spectrum, the energy dependence of the partial cross sections for particular NO product states is only in fair agreement with experiment. The same is true for the vibrational and rotational state distributions of NO for selected energies. Because of the interference between direct and indirect dissociation, details of the cross sections are highly sensitive to subtleties of the potential surface. Altogether, the new calculation reproduces the available experimental data more satisfactorily than a previous one. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 4382-4389 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Theoretical study of the influence of excited intermolecular vibrations on the total and partial decay widths of HF dimer is reported. Vibrational predissociation (VP) lifetimes and rotational state distributions of HF fragments were calculated for various quasibound states of (HF)2, corresponding to combinations of the intermolecular stretching (ν4) and bending (ν5) vibrations with the "free'' (ν1) and "bonded'' (ν2) HF stretch fundamentals, for total angular momentum J=1, K=0. The calculations were performed on an ab initio six-dimensional potential energy surface of Quack and Suhm, using a quantum four-dimensional golden rule methodology. The VP lifetimes and product rotational distributions exhibit pronounced dependence on the type of the initially excited intermolecular vibration of HF dimer. The energy deposited in the ν4 intermolecular stretch evolves into the translational energy of the fragments. Excitation of the ν5 intermolecular bending vibration, combined with the ν1 fundamental, is transferred to the product rotational energy. This is in good agreement with the experimental results of Bohac and Miller. We also found that in conjunction with the ν2 fundamental, most of the ν5 bending vibrational energy emerges in the translational energy of the products. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...