GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (381 pages)
    Edition: 1st ed.
    ISBN: 9783662617212
    Language: German
    Note: Intro -- Vorwort -- Danksagung -- Zusammenfassung | Abstract | Shrnutí -- Inhaltsverzeichnis -- 1 Einleitung -- 1.1 Glosse - oder Erfahrungen nach über sieben Jahren Recherche -- 1.2 Begriffsklärungen -- 1.2.1 Probleme bei der Definition von Begriffen -- 1.2.2 Aktive Grubenwasserreinigung -- 1.2.3 Basenkapazität (kB -- Acidität -- Azidität -- m-Wert) -- 1.2.4 Bergwerk -- 1.2.5 Bioreaktor -- 1.2.6 Circular Economy -- 1.2.7 Entwässerungsstollen, Erbstollen, Wasserlösungsstollen -- 1.2.8 First Flush (Erstspülung) -- 1.2.9 Grubenflutung -- 1.2.10 Grubenwasser (Schachtwasser, Stollenwasser) -- 1.2.11 Konstruiertes Feuchtgebiet -- 1.2.12 Koagulation und Flockung -- 1.2.13 Netto-acidisches oder netto-alkalisches Grubenwasser -- 1.2.14 Passive Grubenwasserreinigung -- 1.2.15 Pflanzenkläranlage -- 1.2.16 Phytoremediation (Phytosanierung) -- 1.2.17 pH-Wert -- 1.2.18 Säurekapazität (kS -- Alkalität -- Alkalinität -- p-Wert) -- 1.2.19 Sauerwasser -- 1.2.20 Sorption, Adsorption, Kopräzipitation, Oberflächenkomplexierung und andere derartige Reaktionen -- 1.2.21 Schwermetall -- 1.2.22 Unedles Metall -- 1.3 Entstehung von Grubenwasser und Puffermechanismen -- 1.4 Klassifikationen und Klassifizierung von Grubenwasser -- 2 Voruntersuchungen -- 2.1 Einleitende Hinweise -- 2.2 Probenahme von Grubenwasser -- 2.2.1 Checklisten und Hinweise -- 2.2.2 Hinweis zum Arbeitsschutz -- 2.2.3 Verfahren der Probenahme -- 2.2.4 Qualitätskontrolle -- 2.2.5 Messgeräte und Probenahme -- 2.2.6 Bezeichnung der Proben -- 2.2.7 Gelöste und gesamte Konzentrationen oder auch Filtration -- 2.2.8 Dokumentation -- 2.3 Essenzielle Vor-Ort-Parameter -- 2.3.1 Einleitender Hinweis -- 2.3.2 Elektrische Leitfähigkeit (Spezifische Leitfähigkeit) -- 2.3.3 Basenkapazität (kB -- Acidität) -- 2.3.4 Säurekapazität (kS -- Alkalität -- Alkalinität) -- 2.3.5 Durchfluss und Frachten -- 2.3.6 pH-Wert. , 2.3.7 Eisenkonzentration -- 2.3.8 Mangankonzentration -- 2.3.9 Aluminiumkonzentration -- 2.3.10 Redoxspannung (Eh) -- 2.3.11 Sauerstoffsättigung -- 2.4 Wasseranalytik -- 2.5 Untersuchungen zur Kalkzugabe oder Säulenversuche -- 2.6 Aktive oder passive Grubenwasserreinigung? -- 2.7 Die endlose Grubenwasserreinigung -- 2.8 Pourbaix-Diagramme (Stabilitätsdiagramme, Prädominanzdiagramme) -- 3 Aktive Methoden zur Behandlung von Grubenwasser -- 3.1 Einleitung -- 3.2 Neutralisationsverfahren -- 3.2.1 Prinzipien und geschichtliche Entwicklung -- 3.2.2 Dünnschlammverfahren (LDS) -- 3.2.3 Dickschlammverfahren (HDS) -- 3.2.4 In der Schachtel lebt sich's leichter -- 3.3 Elektrochemische Verfahren -- 3.3.1 Elektrokoagulation -- 3.3.2 Elektrosorption (Kondensatorische Deionisierung) -- 3.3.3 Elektrodialyse/Membranelektrolyse -- 3.4 Membranverfahren -- 3.4.1 Einleitung -- 3.4.2 Mikrofiltration -- 3.4.3 Ultrafiltration -- 3.4.4 Nanofiltration -- 3.4.5 Umkehrosmose (Reverse Osmosis, RO) -- 3.4.6 Sparro-Prozess (Slurry Precipitation And Recycle Reverse Osmosis) -- 3.4.7 Vorwärtsosmose (Forward Osmosis, FO) -- 3.5 Fällungsverfahren für seltenere Schadstoffe -- 3.6 Ettringit-Ausfällung -- 3.6.1 SAVMIN™-Verfahren -- 3.6.2 Andere Verfahren -- 3.7 Schwertmannit-Verfahren -- 3.8 Bioreaktoren (Fermenter) -- 3.9 Ionenaustauscher -- 3.10 Sorption -- 3.11 Erweiterte Oxidation -- 3.12 Flotations-Flüssig-Flüssig-Extrahierung (F-LLX: Flotation Liquid-Liquid Extraction -- VEP: Vale Extraction Process -- Hydro Flex Technology) -- 3.13 Eutektische Gefrierkristallisation -- 4 Passive Methoden zur Behandlung von Grubenwasser -- 4.1 Hinweis -- 4.2 Was ist passive Grubenwasserreinigung? -- 4.3 Carbonatkanäle und -gerinne -- 4.3.1 Einteilung der Kanäle und Gerinne -- 4.3.2 Anoxischer Carbonatkanal (Anoxic Limestone Drain, ALD) -- 4.3.3 Oxischer Carbonatkanal (Oxic Limestone Drain, OLD). , 4.3.4 Offene Carbonatgerinne (Open Limestone Channel, OLC) -- 4.4 Konstruierte Feuchtgebiete -- 4.4.1 Zum Geleit (das wollte ich schon immer einmal schreiben) -- 4.4.2 Aerobes konstruiertes Feuchtgebiet (aerobic wetland, reed bed) -- 4.4.3 Anaerobes konstruiertes Feuchtgebiet (anaerobic wetland, compost wetland) -- 4.5 Reduzierende Alkalinitätssysteme (Reducing and Alkalinity Producing Systems, RAPS -- Successive Alkalinity Producing Systems, SAPS -- Sulfate Reducing Bioreactor, Vertical Flow Wetlands) -- 4.6 Absetzbecken (settlement lagoon) -- 4.7 Permeable reaktive Wände (durchströmte Reinigungswände) -- 4.8 Vertikaldurchflussreaktor (Vertical Flow Reactor, VFR) -- 4.9 Passive Oxidationssysteme (Kaskaden, Trompe) -- 4.10 ARUM-Prozess (Acid Reduction Using Microbiology: mikrobielle Säureerniedrigung) -- 5 Alternative Methoden zum Management von Grubenwasser -- 5.1 Gedanken über alternative Methoden und deren Anwendung im deutschen Sprachraum -- 5.2 Natürliche und kontrollierte natürliche Selbstreinigung -- 5.2.1 Natürliche Selbstreinigung -- 5.2.2 Kontrollierte natürliche Selbstreinigung -- 5.3 Änderung der Abbaumethoden -- 5.4 Biometallurgie, Geobiotechnologie, Biomimetik oder Agrobergbau -- 6 In-situ- und Vor-Ort-Sanierungsmaßnahmen -- 6.1 Vorbemerkung -- 6.2 In-lake-Verfahren -- 6.2.1 Einleitung -- 6.2.2 In-lake-Kalkung -- 6.2.3 Stimulierte Eisen‐ und Sulfatreduktion in Seen -- 6.2.4 Elektrochemische und elektrobiochemische Behandlung -- 6.3 Chemische Maßnahmen zur Schadstoffreduzierung -- 6.3.1 Behandlung von sauren Seen -- 6.3.2 Chemische Vor-Ort-Maßnahmen -- 6.4 Rückspülung von Schlämmen, Reststoffen oder Kalkmilch -- 6.5 Sanierung verunreinigter Fließgewässer -- 6.6 In-situ-Sanierung von uranhaltigen Gruben- und Sickerwässern -- 6.7 Mischung pyrithaltiger Substrate mit alkalischem Material. , 6.8 Verschluss von Entwässerungs- und Bergwerksstollen -- 7 Restnutzung der Sanierungsobjekte oder Aufbereitungsrückstände -- 7.1 Nutzung der Sanierungsobjekte -- 7.2 Aufbereitungsrückstände als Wertstoffe (Circular Economy) -- 8 Finis -- Lagniappe - Bonuskapitel -- Literatur -- Stichwortverzeichnis.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Acid pollution of rivers, lakes, etc. ; Acid mine drainage -- Environmental aspects. ; Limnology. ; Electronic books.
    Description / Table of Contents: In a comprehensive analysis of one of mankind's most toxic legacies, this book's valuable international perspective on mine water and mine-contaminated lakes explores the general scientific issues before detailing a wealth of survey data and case studies.
    Type of Medium: Online Resource
    Pages: 1 online resource (536 pages)
    Edition: 1st ed.
    ISBN: 9783642293849
    Series Statement: Environmental Science and Engineering Series
    Language: English
    Note: Intro -- Acidic Pit Lakes -- Preface -- Contents -- List of Contributors -- 1 Introduction -- 1.1…Occurrence and Distribution of Pit Lakes -- 1.2…Morphology of Pit Lakes -- 1.3…Local Hydrology and Lake Use -- 1.4…Acidification and Contamination of Lakes -- 1.5…Limnology of Pit Lakes -- 1.6…Modeling and Predictions -- 1.7…Remediation -- 1.8…Case Studies -- 1.9…Aims of this Book -- 2 Terrestrial Environment of Pit Lakes -- 2.1…Morphology, Age, and Development of Pit Lakes -- 2.2…Influence of Groundwater on Pit Lakes -- 3 Limnology of Pit Lakes -- 3.1…Physical Properties of Acidic Pit Lakes -- 3.1.1 Electrical Conductivity -- 3.1.2 Density -- 3.1.3 Optical Properties of Lake Water -- 3.1.4 Stratification and Circulation -- 3.1.5 Waves and Currents in Mining Lakes -- 3.1.6 Mixing and Vertical Transport -- 3.1.7 Concluding Remarks -- 3.2…Limnochemistry of Water and Sediments of Acidic Pit Lakes -- 3.2.1 Pit Lakes from Coal and Lignite Mining -- 3.2.1.1 Water, Sediment, and Pore Water -- Introduction -- Pit Lake Water Chemistry -- Sediment Chemistry -- Sediment Pore Water Chemistry -- Concluding Remarks -- 3.2.1.2 The Role of Iron Minerals in the Biogeochemistry of Acidic Pit Lakes -- Predominant Iron Minerals in Acidic Mine Pit Lakes -- Formation and Stability of Schwertmannite -- The Role of Schwertmannite for the Element Cycles in APLs -- Hydrogeochemical Effects on Schwertmannite Stability Under Transient Hydrological Conditions -- 3.2.1.3 Phosphorus in Acidic Mining Lakes: Importance and Biogeochemical Cycling -- Import of Phosphorus -- Role of Phosphorus in Mine Lake Remediation -- Sedimentation and Accumulation of Particulate Matter and Phosphorus -- Phosphorus Adsorption Properties of Mining Lake Sediments -- Phosphorus Forms in Mining Lake Sediments -- Phosphorus Mobility and Availability: Implications for Mine Lake Succession. , Phosphorus Retention in Mining Lakes and Prognosis of Trophic State -- 3.2.2 Hardrock Metal Mine Pit Lakes: Occurrence and Geochemical Characteristics -- 3.2.2.1 Introduction -- 3.2.2.2 Occurrence of Hardrock Metal-Mine Pit Lakes -- 3.2.2.3 Hydrogeochemical Processes in Metal-Mine Pit Lakes -- 3.2.2.4 Geoenvironmental Characteristics -- 3.2.2.5 Sulfide Mineral Oxidation -- 3.2.2.6 Water Balance -- 3.2.2.7 Water Column Dynamics -- 3.2.2.8 Mineral Solubilities -- 3.2.2.9 Surface Adsorption -- 3.2.2.10 Sediment Biogeochemical Processes -- 3.2.2.11 Water Quality Trends -- 3.2.2.12 Conclusions -- 3.3…The Biology and Ecosystems of Acidic Pit Lakes -- 3.3.1 Plankton -- 3.3.1.1 Phytoplankton -- Species Diversity and pH -- Algal Communities at a pH of About 3 -- Phytoplankton Communities at pH 3.5 to 5 -- Control Mechanisms of Primary Production and Seasonal Succession of Phytoplankton -- Adaptation Strategies of Phytoplankton -- 3.3.1.2 Zooplankton -- Relationship of Species Occurrence and Taxonomic Diversity to pH -- Factors Influencing Colonization of Acidic Pit Lakes by Zooplankton -- Ecology of Species Colonizing Acidic Pit Lakes -- Ecological Characteristics of Zooplankton Communities in Acidic Pit Lakes -- 3.3.1.3 Prokaryotic Microorganisms, Protists, and Fungi -- Bacterial Numbers and Biomass in Acidic Pit Lakes -- Taxonomic Composition of Bacterioplankton in Acidic Pit Lakes -- Fungi and Yeasts -- Heterotrophic Protists in Acidic Pit Lakes -- 3.3.1.4 Trophic Interactions and Energy Flow -- Adaptations to the Chemical Environment and to the Unusual Light Climate -- pH -- Light -- Metals -- Phosphorus -- Carbon -- Mixotrophy and Resource Limitation of Consumers -- Mixotrophy as a Strategy to Overcome Resource Limitation -- Resource Limitation of Consumers -- Pelagic Primary Production and Bacterial Production in Lusatian Mine Lakes -- Bacteria. , Biomass and Production -- Carbon Sources -- Accumulation of Algae in Subsurface Layers -- Food Web Structure in Acidic Mine Lakes -- Potential of ''Controlled Eutrophication'' for Abatement of Acidification -- 3.3.2 Littoral, Benthic and Sediment Zone -- 3.3.2.1 Macrophytes and Neophyte Invasions -- Introduction -- Vegetation of Mining Lakes -- Strategies of Macrophyte Survival in Acidic Environments -- Macrophyte Invasions in Mining Lakes -- 3.3.2.2 Zygnematalean Green Algae (Streptophyta, Zygnematales) in Lakes Impacted by Acidic Precipitation, Experimental Acidification, and Acid Mine Drainage -- Introduction -- General Features of Zygnematales -- Distinctive Features of Zygnematalean Green Algae -- Ecological Importance of Zygnematalean Green Algae -- The pH-dependent Occurrence of Zygnematalean Green Algae -- Factors that Determine the Distribution and Productivity of Zygnematalean Green Algae -- Abiotic Factors that Determine Distribution and Productivity -- Effects of pH -- Nutrient Limitation and Primary Production -- Deposition and Toxicity of Metals -- Physical Parameters that Determine Distribution and Productivity -- Biotic Factors that Determine Distribution and Productivity -- Summary of Research Needed on Zygnematalean Green Algae in Acid-influenced Habitats -- 3.3.2.3 Benthic primary production -- 3.3.2.4 Benthic and Sediment Community and Processes -- Zoobenthos -- Microbial Numbers and Biomass -- Prokaryotic Diversity in Pit Lake Sediments -- Microbially Mediated Sediment Processes -- Iron and Sulfate Reduction and Potential for Remediation -- 3.4…Modeling of Pit Lakes -- 3.4.1 Introduction -- 3.4.2 Physical Properties of Pit Lakes -- 3.4.2.1 Water Density -- 3.4.2.2 Vertical Stability -- Dimictic Lakes -- 3.4.3 Geochemical Processes Influencing Pit Lake Chemistry -- 3.4.4 Pit Lake Model Characteristics -- 3.4.4.1 Basic Properties. , 3.4.4.2 Turbulence and Mixing -- 3.4.4.3 Pit Shell Morphometry -- Hydrologic Balance in Pit Lakes -- 3.4.4.4 Energy Balance in Pit Lakes -- 3.4.5 Model Inputs and Outputs -- 3.4.6 Model Verification and Sensitivity -- 3.4.7 Examples of Pit Lake Models -- 3.4.7.1 DYRESM -- 3.4.7.2 PitMod -- 3.4.7.3 PitMod: Physical Component -- 3.4.7.4 PitMod: Geochemical Component -- 3.4.8 Case Studies -- 3.4.8.1 The Equity Silver Mine -- 3.4.8.2 A High Latitude Pit Lake -- 3.4.8.3 Scenario 1: CP and Overflow Discharged at Surface -- 3.4.8.4 Scenario 2: Discharge of CP Water at Depth -- 3.4.8.5 Scenario 3: All Inflows Directed to Depth -- 3.4.9 Conclusions -- 4 Remediation and Management of Acidified Pit Lakes and Outflowing Waters -- 4.1…Goals and Conditions of Remediation and Management -- 4.1.1 Introduction -- 4.1.2 Hydrological Lake Types -- 4.1.3 Flow of Acidity in the Post-mining Landscape -- 4.2…Hydrological Management and Chemical In-Lake Treatments -- 4.2.1 Acidic Pit Lakes Filled and Flow-Through with Fresh Water -- 4.2.2 Chemical Treatment of Acidified Lakes -- 4.2.2.1 Alkaline Substances to Neutralize AMD Water -- Liming While Flooding in Sleeper Lake -- Lime in Lake Koschen (Lake Geierswalde) -- Soda Ash in Lake Bockwitz -- Iron Hydroxide Low-Density Sludge -- Fly Ash, Limestone and Hydrated Lime in Lake Burghammer -- CO2 Addition -- 4.2.2.2 In-Lake Distribution, Particle Size, and Reactivity of Suspended Chemicals -- 4.2.2.3 Sustainability of Chemical Lake Treatment -- 4.2.2.4 Primary and Secondary Chemical Treatments -- 4.2.3 Decontamination by Copper Recovery: A Special Case -- 4.3…Biological In-lake Treatment -- 4.3.1 Stimulation of Sulfate Reduction in Lake Water and Lake Sediment -- 4.3.1.1 Anchor Hill Pit Lake -- 4.3.1.2 Australian Pit Lakes: Garrick East and Ewington -- 4.3.1.3 Conclusions on Biological Treatment of Holomictic Pit Lakes. , 4.3.2 Meromictic Lakes Used for Subhydric Deposition and as Large-scale Reactors -- 4.3.3 Sulfate Reduction in Floating In-Lake Reactors -- 4.3.4 Ecological Engineering of AMD Affected Lakes -- 4.3.5 Carbon Dioxide Accumulation in Meromictic Pit Lakes -- 4.4…Treatments of In- and Out-Flows -- 4.4.1 Water Management in a Mining District -- 4.4.2 Treatment of Acidified Streams -- 4.4.3 Suitability of Passive and Active Treatments -- 4.4.4 Active Treatment -- 4.4.4.1 Chemical Treatment Plants -- 4.4.4.2 Biological Active Treatment Plants -- 4.4.5 Passive Treatment Options -- 4.4.5.1 Natural Attenuation in Dumps and Lakes -- 4.4.5.2 Natural Attenuation in the Hyporheic Zone of Streams -- 4.4.5.3 Passive Treatment at the Sediment-Water Interface -- 4.4.5.4 Passive Treatment and Enhanced Natural Attenuation -- 4.4.5.5 Passive Chemical Treatments and Aerobic Wetlands -- 4.4.5.6 Passive Biological Treatment in Anaerobic Wetlands -- 4.4.6 Assessments of Passive versus Active Treatment -- 4.5…Conclusions and Lessons Learned -- 4.6…Avoidance and Source Treatment -- 5 Case Studies and Regional Surveys -- 5.1…Pit Lakes in Germany: Hydrography, Water Chemistry, and Management -- 5.1.1 Origin and Regional Distribution -- 5.1.2 Data Sources -- 5.1.3 Morphometry and Stratification -- 5.1.4 Water Chemistry -- 5.1.5 Remediation and Management -- 5.1.6 Use of the Pit Lakes -- 5.1.7 Conclusions -- 5.2…Lakes in Large Scale Open-Pits in Poland -- 5.2.1 Contemporary Brown Coal Strip Mining from the Second Half of the 20th Century -- 5.2.1.1 Economic Background -- 5.2.1.2 Social Problems -- 5.2.2 Genesis and Places of Occurrence -- 5.2.3 Historic Brown Coal Mining in the Muzhakov Arc -- 5.2.3.1 Water Chemistry -- 5.2.3.2 Biology of Lakes in the Muzhakov Arc -- 5.2.4 Lakes in Sulfur Opencasts -- 5.2.4.1 Piaseczno [Piasetschno] -- 5.2.4.2 Machów. , 5.2.5 Remediation and Reclamation.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Water quality management. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (481 pages)
    Edition: 1st ed.
    ISBN: 9783540773313
    DDC: 363.731
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Acid mine drainage-Purification. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (373 pages)
    Edition: 1st ed.
    ISBN: 9781119620181
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Prediction and Prevention of AMD Formation -- Chapter 1 Management of Metalliferous Solid Waste and its Potential to Contaminate Groundwater: A Case Study of O'Kiep, Namaqualand Sout -- List of Abbreviations -- 1.1 Introduction -- 1.2 CMMs: Overview and Challenges -- 1.3 Metalliferous Solid Waste -- 1.3.1 Stockpiled Overburden Materials -- 1.3.2 Stockpiled Metalliferous Waste -- 1.3.3 Metalliferous Tailings -- 1.4 Environmental and Social Impact of CMMs and MSW -- 1.5 Soil Contamination -- 1.6 Groundwater Contamination -- 1.7 Atmospheric Contamination -- 1.8 Metalliferous Solid Waste Management -- 1.9 Rehabilitation and Restoration Strategies -- 1.10 ARD Formation and Groundwater Contamination -- 1.11 Overview of Challenges Associated with CMMs -- 1.12 Conclusion -- References -- Chapter 2 Mine Water Treatment and the Use of Artificial Intelligence in Acid Mine Drainage Prediction -- List of Abbreviations -- 2.1 Acid Mine Drainage (AMD) -- 2.1.1 AMD Generation -- 2.1.2 Factors Controlling AMD Generation -- 2.2 Remediation of AMD -- 2.2.1 Introduction -- 2.2.2 Passive Treatment of AMD -- 2.2.3 Active Treatment of AMD -- 2.2.4 Challenges With Current AMD Treatment -- 2.2.5 Value Recovery From AMD Treatment -- 2.3 Prediction of AMD -- 2.3.1 Limitations of Predictive Tools -- 2.4 Application of Artificial Intelligence for AMD Quality Prediction -- 2.4.1 Introduction -- 2.4.2 Different AI Techniques Used to Predict AMD Quality -- 2.4.3 Limitations of AI Techniques in Prediction of AMD Quality -- 2.4.4 Case Study-Ermelo Coalfield, South Africa -- 2.5 Conclusions -- References -- Chapter 3 The Prediction of Acid Mine Drainage Potential Using Mineralogy -- 3.1 Introduction -- 3.2 Mineralogical Approach for Prediction of AMD Potential. , 3.2.1 AMD Chemistry for Maximum Acid Generation or Consumption Potential -- 3.2.2 Mineral Modal Abundance -- 3.2.3 Mineral Reactivity -- 3.2.4 Mineral Liberation -- 3.2.5 Calculation of the AMD Potential -- 3.3 Application of the AMD Predictive Protocol -- 3.3.1 Experimental Procedures -- 3.3.2 Results and Discussion -- 3.4 Conclusions and Further Work -- References -- Chapter 4 Oxidation Processes and Formation of Acid Mine Drainage from Gold Mine Tailings: A South African Perspective -- 4.1 Introduction -- 4.2 Weathering and Oxidation of the Witwatersrand Gold Tailings -- 4.3 Water Infiltration and Oxygen Diffusion vs Oxidation Processes -- 4.3.1 Hydrogeology of Tailings Storage Facilities -- 4.3.1.1 Introduction -- 4.3.1.2 Primary Hydraulic Characteristics -- 4.3.1.3 Geological Structures as Preferential Flow Paths -- 4.3.2 Oxygen Diffusion -- 4.4 Geochemical and Mineralogical Evolution -- 4.4.1 Tailings Geochemistry and Mineralogy -- 4.4.2 Pore Water Geochemistry -- 4.5 Discussion, Conclusion, and Recommendations -- 4.5.1 Discussion -- 4.5.1.1 Mapping of the Oxidation Zones in Tailings Dams -- 4.5.1.2 Hydrogeological Situation -- 4.5.1.3 Oxygen Diffusion With Depth -- 4.5.1.4 Mineralogical and Geochemical Evolution of Tailings -- 4.5.1.5 Evolution of Pore Water Chemistry -- 4.5.1.6 Oxidation Processes and Drainage Formation -- 4.5.2 Conclusions -- 4.5.3 Recommendations -- Acknowledgements -- References -- Part 2: AMD Treatment -- Chapter 5 Technologies that can be Used for the Treatment of Wastewater and Brine for the Recovery of Drinking Water and Saleable Produc -- 5.1 Introduction -- 5.1.1 Formation of Acid Mine Water -- 5.1.2 Water Volumes -- 5.1.3 Legislation -- 5.1.4 Government Initiatives -- 5.1.5 Required Criteria -- 5.2 Neutralization Technologies -- 5.2.1 Neutralization Using Lime -- 5.2.1.1 Conventional Treatment With Lime. , 5.2.1.2 High-Density Sludge Process -- 5.2.2 Limestone Neutralization -- 5.2.3 Limestone Handling and Dosing System -- 5.2.4 Utilization of Alkali in Mine Water for Removal of Iron(II) -- 5.2.5 Modeling -- 5.2.6 Lime/Limestone Neutralization -- 5.2.6.1 Description of the Process -- 5.2.6.2 Removal of H2SO4, Fe3+, and Al3+ with Limestone -- 5.2.6.3 Removal of H2SO4, Fe3+, Al3+, and Fe2+ with Limestone -- 5.3 Chemical Desalination -- 5.3.1 SAVMIN -- 5.3.2 Barium Sulfate Treatment Process -- 5.4 Membrane Processes -- 5.4.1 Reverse Osmosis -- 5.4.2 NF Technologies -- 5.4.3 High Recovery Precipitating Reverse Osmosis (HiPRO®) Process -- 5.4.4 Electrodialysis -- 5.4.5 Vibration Shear Enhanced Process -- 5.4.6 Multi-Effect Membrane Distillation -- 5.4.7 Forward Osmosis Desalination -- 5.4.8 Biomimetic Desalination-Aquaporin Proteins -- 5.4.9 Carbon Nanotube Distillation -- 5.5 Ion-Exchange Technologies -- 5.5.1 Introduction -- 5.5.2 Conventional Ion-Exchange -- 5.5.3 The GYP-CIX -- 5.5.4 KNeW -- 5.6 Biological Processes -- 5.6.1 Background -- 5.6.2 Biological Sulfate Reduction -- 5.6.3 Constructed Bioreactors -- 5.6.4 Paques Technologies -- 5.6.5 BioSURE Technology -- 5.6.6 The VitaSOFT Process -- 5.6.7 In Situ Reactor -- 5.6.8 Constructed Aerobic Wetlands -- 5.6.9 Permeable Reactive Barriers -- 5.6.10 General Aspects and Various Passive Technologies -- 5.7 Electrochemical Processes -- 5.7.1 Electrocoagulation -- 5.7.2 Nanoelectrochemical Process for the Treatment of AMD -- 5.8 Freezing-Based Technologies -- 5.8.1 Basics -- 5.8.2 Eutectic Freeze Crystallization -- 5.8.3 HybridICE™ Technology -- 5.9 Sludge Processing -- 5.9.1 Background -- 5.9.2 Recovery of Saleable Products or Raw Materials -- 5.10 Integrated Processes-ROC Process -- 5.10.1 Background -- 5.10.2 Process Description -- 5.11 Feasibility Models -- 5.11.1 Introduction. , 5.11.2 Feasibility of Individual Stages -- 5.11.2.1 Neutralization Technologies -- 5.11.2.2 Desalination Technologies -- 5.11.2.3 Brine Treatment -- 5.11.2.4 Product Recovery -- 5.11.3 Feasibility of Various Process Configurations -- 5.12 Conclusions -- Acknowledgements -- References -- Part 3: Recovery of Values from AMD -- Chapter 6 Recovery of Ochers from Acid Mine Drainage Treatment: A Geochemical Modeling and Experimental Approach -- 6.1 Introduction -- 6.2 Methodology -- 6.2.1 Simulation Studies-Model Setup as an Experimental Design Approach -- 6.2.2 Experimental Studies -- 6.2.2.1 Experiment 1 -- 6.2.2.2 Using NaOH as a Neutralizing Agent -- 6.2.2.3 Addition of Ferrocyanide to Mineral Salts Used to Simulate AMD (Experiment 2) -- 6.2.2.4 Using MgCO3 as a Neutralizing Agent -- 6.2.3 Characterization of Fe Oxides -- 6.3 Results and Discussion -- 6.3.1 Simulation Studies -- 6.3.1.1 Individual Neutralizing Agents -- 6.3.1.2 Combined Neutralizing Agents -- 6.3.1.3 Equilibrating with CO -- 6.3.1.4 Equilibrating with O -- 6.3.1.5 Fixed pH -- 6.3.1.6 Varying Temperature -- 6.3.1.7 Varying Concentrations of Neutralizing Agents -- 6.3.2 Characterization of HDS -- 6.3.2.1 Aims and Dry Matter -- 6.3.2.2 Physical Characterization of HDS -- 6.3.2.3 Chemical Characterization of HDS -- 6.3.2.4 Mineralogy and Chemical Composition of HDS -- 6.3.3 Experimental Studies -- 6.3.3.1 Procedure Description -- 6.3.3.2 Formation of Precipitates -- 6.3.3.3 Characterization of Fe Precipitates -- 6.3.3.4 Application in Paintings and Artwork -- 6.3.3.5 Water Chemistry -- 6.4 Indicative Cost Analysis -- 6.5 Conclusion -- Acknowledgements -- References -- Chapter 7 Innovative Routes for Acid Mine Drainage (AMD) Valorization: Advocating for a Circular Economy -- 7.1 Introduction -- 7.1.1 Problem Description -- 7.1.2 Physico-Chemical-Microbiological Properties of AMD. , 7.2 Health Effects Associated with Contaminants in AMD -- 7.3 Abatement of AMD -- 7.4 Techniques for AMD Treatment -- 7.4.1 Overview -- 7.4.2 Chemical Precipitation -- 7.4.3 Adsorption -- 7.4.4 Filtration -- 7.4.4.1 Introduction to Membrane Technologies -- 7.4.5 Phyto Remediation -- 7.4.5.1 Theory of the MD Process -- 7.4.6 Phytoremediation -- 7.5 Valorization of AMD -- 7.5.1 Aims of Valorization -- 7.5.2 Reclamation of Drinking Water -- 7.5.3 Recovery of Valuable Minerals -- 7.5.4 Synthesis of Valuable Minerals -- 7.6 Case Study -- 7.7 Challenges Relating to Valorization -- 7.8 Conclusions and Future Perspectives -- References -- Chapter 8 Recovery of Critical Raw Materials from Acid Mine Drainage (AMD): The EIT-Funded MORECOVERY Project -- 8.1 Introduction -- 8.2 Recovery of CRMs from AMD -- 8.3 Upscaling of Successful Technologies and Economic Suitability -- 8.4 Coupling Environmental and Resources Policy: The EIT-Funded MORECOVERY Project -- Acknowledgements -- References -- Chapter 9 Deriving Value from Acid Mine Drainage -- 9.1 Introduction -- 9.2 AMD Formation -- 9.3 AMD Treatment Options -- 9.3.1 General Philosophy -- 9.3.2 High-Density Sludge Neutralization of AMD -- 9.3.3 Sulfate Removal Options -- 9.3.3.1 Reverse Osmosis -- 9.3.3.2 Ettringite Precipitation -- 9.3.3.3 Barium Carbonate Addition -- 9.3.3.4 Biological Sulfate Reduction -- 9.4 Deriving Value from AMD -- 9.4.1 Fit-for-Use Water -- 9.4.1.1 The Cascade Model -- 9.4.1.2 Water Suitable for Irrigation -- 9.4.1.3 Water Suitable for Industrial Use -- 9.4.1.4 Water Suitable for Environmental Discharge -- 9.4.1.5 Water Suitable for Sanitation -- 9.4.1.6 Potable Water -- 9.4.1.7 Cooling Water -- 9.4.1.8 Boiler Water -- 9.4.2 By-Products from AMD Treatment Processes -- 9.4.2.1 Overview -- 9.4.2.2 Gypsum Containing Products -- 9.4.2.3 High-Value Iron-Bearing Products. , 9.4.2.4 Uranium and Base Metals.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Mine water. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (360 pages)
    Edition: 1st ed.
    ISBN: 9783662657706
    DDC: 622.5
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Abstract | Zusammenfassung | Shrnutí -- English Abstract -- German Zusammenfassung -- Czech Shrnutí -- Contents -- Notes from the Author -- Legal Notice -- Company Names -- Note on Gender Mainstreaming -- Texts and Illustrations from Previous Publications -- List of Figures -- List of Tables -- 1: Introduction -- 1.1 Sidenotes - or Experiences After More Than a Decade of Literature Review -- 1.2 Definition of Terms -- 1.2.1 Problems with the Definition of Terms -- 1.2.2 Active Mine Water Treatment -- 1.2.3 Base Capacity (kB -- Acidity -- m-Value) -- 1.2.4 Mine -- 1.2.5 Bioreactor -- 1.2.6 Circular Economy -- 1.2.7 Mine Water Discharge - "Decant" -- 1.2.8 First Flush -- 1.2.9 Mine Flooding -- 1.2.10 Mine Water (Mine Drainage, Mining Influenced Water) -- 1.2.11 Constructed Wetlands for Mine Water Treatment -- 1.2.12 Coagulation and Flocculation -- 1.2.13 Net Acidic or Net Alkaline Mine Water -- 1.2.14 Passive Mine Water Treatment -- 1.2.15 Treatment Wetlands for Municipal Wastewater -- 1.2.16 Phytoremediation -- 1.2.17 pH Value -- 1.2.18 Acid Capacity (kA -- Alkalinity -- p-Value) -- 1.2.19 Acid Mine Drainage -- 1.2.20 Sorption, Adsorption, Coprecipitation, Surface Complexation and Other Such Reactions -- 1.2.21 Heavy Metal -- 1.2.22 Base Metal -- 1.3 Formation of Mine Water and Buffer Mechanisms -- 1.4 Classification of Mine Water -- 2: Preliminary Investigations -- 2.1 Introductory Remarks -- 2.2 Mine Water Sampling -- 2.2.1 Checklists and Notes -- 2.2.2 Note on Occupational Health and Safety -- 2.2.3 Sampling Methods -- 2.2.4 Quality Control -- 2.2.5 Measuring Instruments and Sampling -- 2.2.6 Sample Names -- 2.2.7 Dissolved and Total Concentrations -- 2.2.8 Documentation -- 2.3 Essential On-Site Parameters -- 2.3.1 Introductory Note. , 2.3.2 Electrical Conductivity (Specific Conductance) -- 2.3.3 Base Capacity (kB -- Acidity) -- 2.3.4 Acid Capacity (kA -- Alkalinity) -- 2.3.5 Flow and Loads -- 2.3.6 pH Value -- 2.3.7 Iron Concentration -- 2.3.8 Manganese Concentration -- 2.3.9 Aluminium Concentration -- 2.3.10 Redox Potential (Eh, ORP) -- 2.3.11 Oxygen Saturation -- 2.4 Water Analysis -- 2.5 Lime Addition or Column Tests -- 2.6 Active or Passive Mine Water Treatment? -- 2.7 The Endless Mine Water Treatment Plant -- 2.8 Pourbaix Diagrams (Stability Diagrams, Predominance Diagrams, Eh-pH-Diagrams, "Confusogram" sensu P. Wade) -- 3: Active Treatment Methods for Mine Water -- 3.1 Introduction -- 3.2 Neutralisation Process -- 3.2.1 Principles and Historical Development -- 3.2.2 Low Density Sludge (LDS) Process -- 3.2.3 High Density Sludge (HDS) Process -- 3.2.4 It Is Easier to Live in a Box -- 3.3 Electrochemical Processes -- 3.3.1 Electrocoagulation -- 3.3.2 Electrosorption (Condensation Deionisation) -- 3.3.3 Electrodialysis/Membrane-Based Electrolysis -- 3.4 Membrane-Based Processes -- 3.4.1 Introduction -- 3.4.2 Microfiltration -- 3.4.3 Ultrafiltration -- 3.4.4 Nanofiltration -- 3.4.5 Reverse Osmosis (RO) -- 3.4.6 Sparro Process (Slurry Precipitation and Recycle Reverse Osmosis) -- 3.4.7 Forward Osmosis (FO) -- 3.5 Precipitation Methods for Uncommon Contaminants -- 3.6 Ettringite Precipitation -- 3.6.1 SAVMIN™ Process -- 3.6.2 Other Procedures -- 3.7 Schwertmannite Process -- 3.8 Bioreactors (Fermenters) -- 3.9 Ion Exchange -- 3.10 Sorption -- 3.11 Advanced Oxidation -- 3.12 Flotation Liquid-Liquid Extraction (F-LLX -- VEP -- HydroFlex™ Technology) -- 3.13 Eutectic Freeze Crystallisation -- 4: Passive Treatment Methods for Mine Water -- 4.1 Note -- 4.2 What Is Passive Mine Water Treatment? -- 4.3 Limestone Drains and Channels. , 4.3.1 Classification of Limestone Drains and Channels -- 4.3.2 Anoxic Limestone Drain (ALD) -- 4.3.3 Oxic Limestone Drain (OLD) -- 4.3.4 Open Limestone Channel (OLC) -- 4.4 Constructed Wetlands -- 4.4.1 Prologue (I Have Always Wanted to Write This) -- 4.4.2 Aerobic Constructed Wetland (Reed Bed) -- 4.4.3 Anaerobic Constructed Wetland (Anaerobic Wetland, Compost Wetland) -- 4.5 Reducing and Alkalinity Producing Systems (RAPS) -- Successive Alkalinity Producing Systems (SAPS) -- Sulfate Reducing Bioreactor, Vertical Flow Wetlands -- 4.6 Settling Pond (Settling Basin, Settlement Lagoon) -- 4.7 Permeable Reactive Walls -- 4.8 Vertical Flow Reactor (VFR) -- 4.9 Passive Oxidation Systems (Cascades, "Trompe") -- 4.10 ARUM (Acid Reduction Using Microbiology) Process -- 5: Alternative Methods for the Management of Mine Water -- 5.1 Thoughts on Alternative Treatment Methods and Their Application -- 5.2 Natural and Monitored Natural Attenuation -- 5.2.1 Natural Attenuation -- 5.2.2 Monitored Natural Attenuation -- 5.3 Change in Mining Methods -- 5.4 Biometallurgy, Geobiotechnology, Biomimetics or Agro-metallurgy -- 6: In Situ and On-site Remediation Measures -- 6.1 Introductory Remark -- 6.2 In-lake Processes -- 6.2.1 Introduction -- 6.2.2 In-lake Liming -- 6.2.3 Stimulated Iron and Sulfate Reduction in Lakes -- 6.2.4 Electrochemical and Electro-biochemical Treatment -- 6.3 Chemical Treatment Measures to Reduce Pollutants -- 6.3.1 Treatment of Acidic Lakes -- 6.3.2 On-site Chemical Treatment Measures -- 6.4 Reinjection of Sludge, Treatment Residues or Lime -- 6.5 Remediation of Contaminated Watercourses -- 6.6 In situ Remediation of Uranium-Containing Mine and Seepage Water -- 6.7 Mixing of Pyrite-containing Substrates with Alkaline Material -- 6.8 Closure of Drainage and Mine Adits. , 7: Post-mining Usage of Mine Sites or Residues of the Treatment Process -- 7.1 Post-mining Usage of Remediated Sites -- 7.2 Treatment Residues as Recyclable Materials (Circular Economy) -- 8: Finish -- Correction to: Introduction -- Correction to: -- Lagniappe - Bonus Chapter -- Explanation of Terms/Glossary/Abbreviations -- Introductory Remarks -- Glossary -- Abbreviations -- Symbols and Units -- Acronyms and Abbreviations -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Mines and mineral resources. ; Hydraulic engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (1125 pages)
    Edition: 1st ed.
    ISBN: 9783642556685
    DDC: 551.4
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Berlin, Heidelberg : Springer Berlin Heidelberg | Berlin, Heidelberg : Imprint: Springer
    Keywords: Environment. ; Earth sciences. ; Grubenwasser ; Wasserreinigung ; Probenahme ; Reinigungsverfahren ; Abwasserreinigung ; Umweltgeochemie ; Altbergbau ; Bergwerk ; Methode ; Grundwasser ; Wasseraufbereitung ; Hydrogeochemie
    Description / Table of Contents: Introduction -- Preliminary investigations -- Active methods of mine water treatment -- Passive methods of mine water treatment -- Alternative methods of mine water management -- In situ and on-site remediation -- Residual use of remediation objects or treatment residues -- Finis.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XXXIX, 328 p. 1 illus.)
    Edition: 1st ed. 2022.
    ISBN: 9783662657706
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-23
    Description: Zum Ende des Jahres 2018 wurde in Deutschland der Steinkohlenbergbau eingestellt. Damit beginnt auch in den bis zuletzt aktiven Revieren die Phase des Nachbergbaus inklusive einer dauerhaften Wasserhaltung. Diese beinhaltet typischerweise eine teilweise Grubenflutung und die Ableitung von Grubenwasser in nahegelegene Vorfluter. Im Blickpunkt der öffentlichen und wissenschaftlichen Diskussion stehen bergbauliche Schadstoffquellen und deren Risiken für die oberflächennahen Trinkwasserressourcen. Es existieren eine Reihe Kriterien und Kontrollmechanismen, um potenziellen Schadstoffaustrag zu erkennen und zu verhindern. Dazu zählen moderne Monitoringprogramme und Modellanwendungen, welche bestehende Schadstoffprognosen verbessern können. Daneben ist auch eine rechtlich und fachlich begründete Bewertung von Gefahrenszenarios eine entscheidende Größe für nachhaltiges Risikomanagement. Der Grubenwasseranstieg eröffnet jedoch auch Chancen, ehemalige Bergwerke für energetische Nutzungen umzurüsten. Bereits heute werden Heizkraftwerke mit Grubenwasser betrieben und es besteht großes Ausbaupotenzial. Dieser Beitrag diskutiert die Chancen und Risiken von Grubenflutungen in Deutschland und gibt einen Ausblick, welche Entwicklungen und Herausforderungen in Zukunft zu erwarten sind.
    Description: Universität Greifswald (1032)
    Description: Groundwater in former German coal mining areas—a scientific perspective on mine floodings
    Keywords: ddc:522 ; Mine water ; Hard coal mining ; Flooding ; Post-mining ; Monitoring
    Language: German
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...