GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: H+-ATPase ; immunolocalization ; in situ hybridization ; nodules ; Phaseolus vulgaris ; transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Legume nodules have specialized transport functions for the exchange of carbon and nitrogen compounds between bacteroids and root cells. Plasma membrane-type (vanadate-sensitive) H+-ATPase energizes secondary active transporters in plant cells and it could drive exchanges across peribacteroidal and plasmatic membranes. A nodule cDNA corresponding to a major isoform of Phaseolus vulgaris H+-ATPase (designated BHA1) has been cloned. BHA1 is a functional proton pump because after removal of its inhibitory domain and can complement a yeast mutant unable to synthesize a H+-ATPase. BHA1 is not nodule-specific, since it is also expressed in roots of uninfected plants. It belongs to the subfamily of plasma membrane H+-ATPases defined by the Arabidopsis AHA1, AHA2 and AHA3 genes and the tobacco PMA4 and corn MHA2 genes. In situ hybridization in nodule sections indicates high expression of BHA1 limited to uninfected cells. These results were confirmed by immunocytochemistry. The relatively low expression of plasma membrane-type H+-ATPase in Rhizobium-infected cells put a note of caution on the origin of the vanadate-sensitive ATPase described in preparations of peribacteroidal membranes. Also, our results indicate that active transport in symbiotic nodules is most intense at the plasma membrane of uninfected cells and support a specialized role of uninfected tissue for nitrogen transport.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: H+-ATPase(plasma membrane) ; Coleoptile ; Leaf ; Phloem ; Stoma ; Zea (H+-ATPase)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The plasma-membrane H+-ATPase (EC 3.6.1.35) of maize (Zea mays L.) coleoptiles and enclosed leaves has been localized at the optical-microscope level utilizing paraffin sections and a specific monoclonal antibody. Both in coleoptiles and in leaves the stomatal guard cells and the phloem of vascular bundles are the tissues most enriched in ATPase. The enrichment in guard cells is relevant to active ion transport during stomata opening. Considering the postulated activation of coleoptile ATPase by auxin, it is remarkable that the ATPase is not enriched in the coleoptile epidermis, where most of the auxin receptor is located.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6881
    Keywords: HL-60 ; ρ°HL-60 ; ubiquinone ; plasma membrane ; apoptosis ; ceramide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Serum provides cultured cells with survival factors required to maintain growth. Its withdrawal induces the development of programmed cell death. HL-60 cells were sensitive to serum removal, and an increase of lipid peroxidation and apoptosis was observed. Long-term treatment with ethidium bromide induced the mitochondria-deficient ρ°HL-60 cell line. These cells were surprisingly more resistant to serum removal, displaying fewer apoptotic cells and lower lipid peroxidation. HL-60 cells contained less ubiquinone at the plasma membrane than ρ°HL-60 cells. Both cell types increased plasma membrane ubiquinone in response to serum removal, although this increase was much higher in ρ° cells. Addition of ubiquinone to both cell cultures in the absence of serum improved cell survival with decreasing lipid peroxidation and apoptosis. Ceramide was accumulated after serum removal in HL-60 but not in ρ°HL-60 cells, and exogenous ubiquinone reduced this accumulation. These results demonstrate a relationship between ubiquinone levels in the plasma membrane and the induction of serum withdrawal induced apoptosis, and ceramide accumulation. Thus, ubiquinone, which is a central component of the plasma membrane electron transport system, can represent a first level of protection against oxidative damage caused by serum withdrawal.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-6881
    Keywords: Coenzyme Q ; plasma membranes ; electron transport ; ascorbate stabilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Plasma membranes isolated from wild-type Saccharomyces cerevisiae crude membrane fractions catalyzed NADH oxidation using a variety of electron acceptors, such as ferricyanide, cytochrome c, and ascorbate free radical. Plasma membranes from the deletion mutant strain coq3Δ, defective in coenzyme Q (ubiquinone) biosynthesis, were completely devoid of coenzyme Q6 and contained greatly diminished levels of NADH–ascorbate free radical reductase activity (about 10% of wild-type yeasts). In contrast, the lack of coenzyme Q6 in these membranes resulted in only a partial inhibition of either the ferricyanide or cytochrome-c reductase. Coenzyme Q dependence of ferricyanide and cytochrome-c reductases was based mainly on superoxide generation by one-electron reduction of quinones to semiquinones. Ascorbate free radical reductase was unique because it was highly dependent on coenzyme Q and did not involve superoxide since it was not affected by superoxide dismutase (SOD). Both coenzyme Q6 and NADH–ascorbate free radical reductase were rescued in plasma membranes derived from a strain obtained by transformation of the coq3Δ strain with a single-copy plasmid bearing the wild type COQ3 gene and in plasma membranes isolated form the coq3Δ strain grown in the presence of coenzyme Q6. The enzyme activity was inhibited by the quinone antagonists chloroquine and dicumarol, and after membrane solubilization with the nondenaturing detergent Zwittergent 3–14. The various inhibitors used did not affect residual ascorbate free radical reductase of the coq3Δ strain. Ascorbate free radical reductase was not altered significantly in mutants atp2Δ and cor1Δ which are also respiration-deficient but not defective in ubiquinone biosynthesis, demonstrating that the lack of ascorbate free radical reductase in coq3Δ mutants is related solely to the inability to synthesize ubiquinone and not to the respiratory-defective phenotype. For the first time, our results provide genetic evidence for the participation of ubiquinone in NADH–ascorbate free radical reductase, as a source of electrons for transmembrane ascorbate stabilization.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-6881
    Keywords: Plasma membrane ; ascorbate regeneration ; ascorbyl free radical ; coenzyme Q
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract A role for coenzyme Q in the stabilization of extracellular ascorbate by intact cells has beenrecently recognized. The aim of this work was to study the interactions between reducedubiquinone in the plasma membrane and the ascorbyl free radical, as an approach to understandubiquinone-mediated ascorbate stabilization at the cell surface. K-562 cells stabilized ascorbateand decreased the steady-state levels of the semiascorbyl radical. The ability of cells to reduceascorbyl free radical was inhibited by the quinone analogs capsaicin and chloroquine andstimulated by supplementing cells with coenzyme Q10. Purified plasma membranes also reducedascorbyl free radical in the presence of NADH. Free-radical reduction was notobserved inquinone-depleted plasma membranes, but restored after its reconstitution with coenzyme Q10.Addition of reduced coenzyme Q10 to depleted membranes allowed them toreduce the signalof the ascorbyl free radical without NADH incubation and the addition of an extra amount ofpurified plasma membrane quinone reductase further stimulated this activity. Reduction wasabolished by treatment with the reductase inhibitor p-hydroximercuribenzoate and by blockingsurface glycoconjugates with the lectin wheat germ agglutinin, which supports the participationof transmembrane electron flow. The activity showed saturation kinetics by NADH andcoenzyme Q, but not by the ascorbyl free radical in the range of concentrations used. Our resultssupport that reduction of ascorbyl free radicals at the cell surface involves coenzyme Qreduction by NADH and the membrane-mediated reduction of ascorbyl free radical.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-6881
    Keywords: Plasma membrane ; ascorbate stabilization ; coenzyme Q ; cytochrome b 5 reductase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Plasma membranes isolated from K562 cells contain an NADH-ascorbate free radical reductase activity and intact cells show the capacity to reduce the rate of chemical oxidation of ascorbate leading to its stabilization at the extracellular space. Both activities are stimulated by CoQ10 and inhibited by capsaicin and dicumarol. A 34-kDa protein (p34) isolated from pig liver plasma membrane, displaying NADH-CoQ10 reductase activity and its internal sequence being identical to cytochrome b 5 reductase, increases the NADH-ascorbate free radical reductase activity of K562 cells plasma membranes. Also, the incorporation of this protein into K562 cells by p34-reconstituted liposomes also increased the stabilization of ascorbate by these cells. TPA-induced differentiation of K562 cells increases ascorbate stabilization by whole cells and both NADH-ascorbate free radical reductase and CoQ10 content in isolated plasma membranes. We show here the role of CoQ10 and its NADH-dependent reductase in both plasma membrane NADH-ascorbate free radical reductase and ascorbate stabilization by K562 cells. These data support the idea that besides intracellular cytochrome b 5-dependent ascorbate regeneration, the extracellular stabilization of ascorbate is mediated by CoQ10 and its NADH-dependent reductase.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...