GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (560 pages)
    Edition: 1st ed.
    ISBN: 9780443152580
    DDC: 547.05
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (409 pages)
    Edition: 1st ed.
    ISBN: 9783527844470
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Preface -- Chapter 1 Ultrasound Irradiation: Fundamental Theory, Electromagnetic Spectrum, Important Properties, and Physical Principles -- 1.1 Introduction -- 1.2 Cavitation History -- 1.2.1 Basics of Cavitation -- 1.2.2 Types of Cavitation -- 1.3 Application of Ultrasound Irradiation -- 1.3.1 Sonoluminescence and Sonophotocatalysis -- 1.3.2 Industrial Cleaning -- 1.3.3 Material Processing -- 1.3.4 Chemical and Biological Reactions -- 1.4 Conclusion -- Acknowledgments -- References -- Chapter 2 Fundamental Theory of Electromagnetic Spectrum, Dielectric and Magnetic Properties, Molecular Rotation, and the Green Chemistry of Microwave Heating Equipment -- 2.1 Introduction -- 2.1.1 Historical Background -- 2.1.2 Green Chemistry Principles for Sustainable System -- 2.2 Fundamental Concepts of the Electromagnetic Spectrum Theory -- 2.3 Electrical, Dielectric, and Magnetic Properties in Microwave Irradiation -- 2.4 Microwave Irradiation Molecular Rotation -- 2.5 Fundamentals of Electromagnetic Theory in Microwave Irradiation -- 2.5.1 Electromagnetic Radiations and Microwave -- 2.5.2 Heating Mechanism of Microwave: Conventional Versus Microwave Heating -- 2.6 Physical Principles of Microwave Heating and Equipment -- 2.7 Green Chemistry Through Microwave Heating: Applications and Benefits -- 2.8 Conclusion -- References -- Chapter 3 Conventional Versus Green Chemical Transformation: MCRs, Solid Phase Reaction, Green Solvents, Microwave, and Ultrasound Irradiation -- 3.1 Introduction -- 3.2 A Brief Overview of Green Chemistry -- 3.2.1 Definition and Historical Background -- 3.2.2 Significance -- 3.3 Multicomponent Reactions -- 3.4 Solid Phase Reactions -- 3.5 Microwave Induced Synthesis -- 3.6 Ultrasound Induced Synthesis -- 3.7 Green Chemicals and Solvents. , 3.8 Conclusions and Outlook -- References -- Chapter 4 Metal‐Catalyzed Reactions Under Microwave and Ultrasound Irradiation -- 4.1 Ultrasonic Irradiation -- 4.1.1 Iron‐Based Catalysts -- 4.1.2 Copper‐Based Catalysts -- 4.1.2.1 Dihydropyrimidinones by Cu‐Based Catalysts -- 4.1.2.2 Dihydroquinazolinones by Cu‐Based Catalysts -- 4.1.3 Misalliances Metal‐Based Catalysts -- 4.2 Microwave‐Assisted Reactions -- 4.2.1 Solid Acid and Base Catalysts -- 4.2.1.1 Condensation Reactions -- 4.2.1.2 Cyclization Reactions -- 4.2.1.3 Multi‐component Reactions -- 4.2.1.4 Friedel-Crafts Reactions -- 4.2.1.5 Reaction Involving Catalysts of Biological Origin -- 4.2.1.6 Reduction -- 4.2.1.7 Oxidation -- 4.2.1.8 Coupling Reactions -- 4.2.1.9 Micelliances Reactions -- 4.2.1.10 Click Chemistry -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Microwave‐ and Ultrasonic‐Assisted Coupling Reactions -- 5.1 Introduction -- 5.2 Microwave -- 5.2.1 Microwave‐Assisted Coupling Reactions -- 5.2.2 Ultrasound‐Assisted Coupling Reactions -- 5.3 Conclusion -- References -- Chapter 6 Synthesis of Heterocyclic Compounds Under Microwave Irradiation Using Name Reactions -- 6.1 Introduction -- 6.2 Classical Methods for Heterocyclic Synthesis Under Microwave Irradiation -- 6.2.1 Piloty-Robinson Pyrrole Synthesis -- 6.2.2 Clauson-Kaas Pyrrole Synthesis -- 6.2.3 Paal-Knorr Pyrrole Synthesis -- 6.2.4 Paal-Knorr Furan Synthesis -- 6.2.5 Paal-Knorr Thiophene Synthesis -- 6.2.6 Gewald Reaction -- 6.2.7 Fischer Indole Synthesis -- 6.2.8 Bischler-Möhlau Indole Synthesis -- 6.2.9 Hemetsberger-Knittel Indole Synthesis -- 6.2.10 Leimgruber-Batcho Indole Synthesis -- 6.2.11 Cadogan-Sundberg Indole Synthesis -- 6.2.12 Pechmann Pyrazole Synthesis -- 6.2.13 Debus-Radziszewski Reaction -- 6.2.14 van Leusen Imidazole Synthesis -- 6.2.15 van Leusen Oxazole Synthesis. , 6.2.16 Robinson-Gabriel Reaction -- 6.2.17 Hantzsch Thiazole Synthesis -- 6.2.18 Einhorn-Brunner Reaction -- 6.2.19 Pellizzari Reaction -- 6.2.20 Huisgen Reaction -- 6.2.21 Finnegan Tetrazole Synthesis -- 6.2.22 Four‐component Ugi‐azide Reaction -- 6.2.23 Kröhnke Pyridine Synthesis -- 6.2.24 Bohlmann-Rahtz Pyridine Synthesis -- 6.2.25 Boger Reaction -- 6.2.26 Skraup Reaction -- 6.2.27 Gould-Jacobs Reaction -- 6.2.28 Friedländer Quinoline Synthesis -- 6.2.29 Povarov Reaction -- 6.3 Conclusion -- Acknowledgments -- References -- Chapter 7 Microwave‐ and Ultrasound‐Assisted Enzymatic Reactions -- 7.1 Introduction -- 7.2 Influence Microwave Radiation on the Stability and Activity of Enzymes -- 7.3 Principle of Ultrasonic‐Assisted Enzymolysis -- 7.4 Applications of Ultrasonic‐Assisted Enzymolysis -- 7.4.1 Proteins and Other Plant Components Can Be Transformed and Extracted -- 7.4.2 Modification of Protein Functionality -- 7.4.3 Enhancement of Biological Activity -- 7.4.4 Ultrasonic‐Assisted Acceleration of Hydrolysis Time -- 7.5 Enzymatic Reactions Supported by Ultrasound -- 7.5.1 Lipase -- 7.5.2 Protease -- 7.5.3 Polysaccharide Enzymes -- 7.6 Biodiesel Production via Ultrasound‐Supported Transesterification -- 7.6.1 Homogenous Acid‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.2 Transesterification with Ultrasound Assistance and Homogenous Base Catalysis -- 7.6.3 Heterogeneous Acid‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.4 Heterogeneous Base‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.5 Enzyme‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.7 Conclusions -- Acknowledgments -- References -- Chapter 8 Microwave‐ and Ultrasound‐Assisted Synthesis of Polymers -- 8.1 Introduction -- 8.2 Microwave‐Assisted Synthesis of Polymers -- 8.3 Ultrasound‐Assisted Synthesis of Polymers -- 8.4 Conclusion -- References. , Chapter 9 Synthesis of Nanomaterials Under Microwave and Ultrasound Irradiation -- 9.1 Introduction -- 9.2 Synthesis of Metal Nanoparticles -- 9.3 Synthesis of Carbon Dots -- 9.4 Synthesis of Metal Oxides -- 9.5 Synthesis of Silicon Dioxide -- 9.6 Conclusion -- References -- Chapter 10 Microwave‐ and Ultrasound‐Assisted Synthesis of Metal‐Organic Frameworks (MOF) and Covalent Organic Frameworks (COF) -- 10.1 Introduction -- 10.2 Principles -- 10.2.1 Principles of Microwave Heating -- 10.2.2 Principle of Ultrasound‐Assisted Techniques -- 10.2.3 Advantages and Disadvantages of Microwave‐ and Ultrasound‐Assisted Techniques -- 10.3 MOF Synthesis by Microwave and Ultrasound Method -- 10.3.1 Microwave‐Assisted Synthesis of MOF -- 10.3.2 Ultrasound‐Assisted Synthesis of MOFs -- 10.4 Factors That Affect MOF Synthesis -- 10.4.1 Solvent -- 10.4.2 Temperature and pH -- 10.5 Application of MOF -- 10.6 COF Synthesis by Microwave and Ultrasound Method -- 10.6.1 Ultrasound‐Assisted Synthesis of COFs -- 10.6.2 Microwave‐Assisted Synthesis of COF -- 10.6.3 Structure of COF (2D and 3D) -- 10.7 Factors Affecting the COF Synthesis -- 10.8 Applications of COFs -- 10.9 Future Predictions -- 10.10 Summary -- Acknowledgments -- References -- Chapter 11 Solid Phase Synthesis Catalyzed by Microwave and Ultrasound Irradiation -- 11.1 Introduction -- 11.2 Wastewater Treatment -- 11.3 Biodiesel Production -- 11.4 Oxygen Reduction Reaction -- 11.5 Alcoholic Fuel Cells -- 11.6 Conclusion and Future Plans -- References -- Chapter 12 Comparative Studies on Thermal, Microwave‐Assisted, and Ultrasound‐Promoted Preparations -- 12.1 Introduction -- 12.1.1 Background on Preparative Techniques in Chemistry -- 12.1.2 Overview of Thermal, Microwave‐Assisted, and Ultrasound‐Promoted Preparations -- 12.1.3 Significance of Comparative Studies in Enhancing Synthetic Methodologies. , 12.1.3.1 Optimization of Conditions -- 12.1.3.2 Efficiency Improvement -- 12.1.3.3 Methodological Advances -- 12.1.3.4 Sustainability and Green Chemistry -- 12.2 Fundamentals of Thermal, Microwave‐Assisted, and Ultrasound‐Assisted Reactions -- 12.2.1 Explanation of Thermal Reactions and Their Advantages and Limitations -- 12.2.2 Introduction to Microwave‐Assisted Reactions and How They Differ from Traditional Method -- 12.2.3 Understanding the Principles and Mechanisms of Ultrasound‐Promoted Reactions -- 12.3 Case Studies in Organic Synthesis -- 12.3.1 Examining Examples of Organic Reactions Performed Under Thermal Conditions -- 12.3.1.1 Esterification Reaction Under Thermal Conditions -- 12.3.1.2 Dehydration of Alcohols -- 12.3.1.3 Oxidation of Aldehydes to Carboxylic Acids Using Water -- 12.3.2 Case Studies Showcasing the Application of Microwave‐Assisted Reactions -- 12.3.2.1 Microwave‐Assisted C C Bond Formation -- 12.3.2.2 Microwave‐Assisted Cyclization -- 12.3.2.3 Microwave‐Assisted Dehydrogenation Reactions -- 12.3.2.4 Microwave‐Assisted Organic Synthesis -- 12.3.3 Highlighting Successful Instances of Ultrasound‐Promoted Organic Synthesis -- 12.3.3.1 Ultrasound‐Promoted in Organic Synthesis -- 12.3.3.2 Ultrasound‐Promoted Oxidations -- 12.3.3.3 Ultrasound‐Promoted Esterification -- 12.3.3.4 Ultrasound‐Promoted Cyclization -- 12.4 Scope and Limitations -- 12.4.1 Discussing the Applicability of Each Method to Different Reaction Types -- 12.4.2 Identifying the Limitations and Challenges Faced by Each Technique -- 12.4.3 Opportunities for Combining Approaches to Overcome Specific Limitations -- 12.5 Future Directions and Emerging Trends -- 12.5.1 Overview of Recent Advancements and Ongoing Research in Thermal, Microwave, and Ultrasound‐Assisted Preparations -- 12.5.1.1 Food Processing Technologies. , 12.5.1.2 Chemical Routes to Materials: Thermal Oxidation of Graphite for Graphene Preparation.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (481 pages)
    Edition: 1st ed.
    ISBN: 9780323959476
    DDC: 541.39
    Language: English
    Note: Front Cover -- Handbook of Organic Name Reactions -- Copyright Page -- Contents -- Foreword -- Preface -- 1 Organic reaction mechanism -- 1.1 Basics of organic chemistry -- 1.1.1 Inductive Effect -- 1.1.2 Electromeric Effect -- 1.1.3 Mesomeric effect/Resonating effect /Conjugation effect -- 1.1.4 Resonance -- 1.1.5 Hyperconjugation or no-bond resonance -- 1.2 Reaction intermediates: carbocation, carbanion, free radical, carbene, nitrene, and benzyne -- 1.2.1 Carbocation -- 1.2.2 Carbanion -- 1.2.3 Carbon-free radical -- 1.2.4 Carbene -- 1.2.5 Nitrene -- 1.2.6 Benzyne/aryne -- 1.3 Nucleophilic addition to carbon-heteroatoms multiple bonds -- 1.4 Electrophilic addition to carbon-carbon multiple bonds -- 1.4.1 Addition of bromine to alkenes -- 1.4.2 Regioselectivity of electrophilic addition to unsymmetrical alkenes -- 1.4.3 Formation of epoxide from alkene -- 1.4.4 Reaction of NBS to alkene -- 1.4.5 Iodo-and Bromo-lactonization -- 1.4.6 Addition of water molecule to alkene and alkynes -- 1.4.7 Dihydroxylation of alkenes -- 1.4.8 Ozonolysis -- 1.4.9 Hydroboration -- 1.5 Nucleophilic aliphatic substitution and neighboring group participation -- 1.6 Unimolecular nucleophilic substitution (SN1)reaction -- 1.7 Bimolecular nucleophilic substitution (SN2)reaction -- 1.8 Neighbouring group participation (NGP) -- 1.9 Substitution nucleophilic internal (SNi) Mechanism -- 1.10 Nucleophilic aromatic substitution -- 1.10.1 Addition-elimination mechanism (An activatedcomplex mechanism) -- 1.10.2 Elimination-addition mechanism (Benzyne mechanism) -- 1.11 Electrophilic aliphatic, alkenyl, and alkynyl substitution reaction -- 1.11.1 Unimolecular electrophilic aliphatic substitution (SE1) reaction -- 1.11.2 Bimolecular aliphatic electrophilic substitution reaction (SE1 and SEi) -- 1.11.3 Electrophilic substitution reaction at the allylic group. , 1.12 Electrophilic aromatic substitution reaction -- 1.13 Elimination reaction -- 1.13.1 Unimolecular elimination (E1) reaction -- 1.13.2 Bimolecular elimination E2 reaction -- 1.13.3 Unimolecular conjugated base (E1cB) Elimination reaction -- References -- 2 Reactions of aldehydes and ketones -- 2.1 Aldol condensation reaction -- 2.1.1 Cross-aldol condensation reaction -- 2.1.1.1 Reactivity of carbonyl compounds with nucleophilic agents -- 2.1.2 Henry nitroaldol condensation -- 2.1.3 Intramolecular aldol condensation -- 2.1.4 Barbas-list asymmetric aldol reaction -- 2.1.5 Mukaiyama aldol reaction -- 2.2 Baeyer-Villiger oxidation -- 2.3 Bamford-Stevens reaction -- 2.3.1 Selectivity in Bamford-Stevens reaction -- 2.4 Barton decarboxylation reaction -- 2.5 Barbier reaction -- 2.6 Barbier in situ Grignard reaction -- 2.7 Baer-Fischer amino sugar synthesis -- 2.8 Baylis-Hillman reaction -- 2.8.1 Intramolecular Baylis-Hillman reaction -- 2.9 Benzoin condensation -- 2.10 Bischler-Napieralski reaction -- 2.11 Bouveault-Blanc reduction reaction -- 2.12 Brown antialdol via B-enolate -- 2.13 Cannizzaro reaction -- 2.14 Claisen ester condensation -- 2.15 Clemmensen reduction reaction -- 2.16 Ciamician C=O photocoupling -- 2.17 Crimmins-Heathcock chiral anti-(syn) aldols -- 2.18 Cross-Cannizzaro reaction -- 2.19 Dakin reaction -- 2.20 Darzens reaction -- 2.21 De Mayo C=C photocycloaddition -- 2.22 Dieckmann condensation/cyclization reaction -- 2.23 Fujiwara arylation carboxylation -- 2.24 Gattermann aldehyde synthesis -- 2.25 Gattermann-Koch reaction -- 2.26 Haller-Bauer reaction -- 2.27 Haloform reaction -- 2.28 Hell-Volhard-Zelinsky reaction -- 2.29 Hunsdiecker reaction -- 2.30 Hollemann pinacol synthesis -- 2.31 Julia-Colonna asymmetric epoxidation -- 2.32 Knoevenagel reaction -- 2.33 Kiliani-Fischer sugar homologation -- 2.34 Mannich reaction. , 2.35 Meerwein-Ponndorf-Verley reduction reaction -- 2.35.1 Applications of the Meerwein-Ponndorf-Verley reduction reaction -- 2.36 Michael addition -- 2.37 Norrish type-I reaction -- 2.38 Norrish type-II reaction -- 2.39 Paterno-Buchi reaction -- 2.40 Perkin reaction -- 2.41 Peterson olefination -- 2.42 Reformatsky reaction -- 2.43 Riley selenium dioxide oxidation -- 2.44 Ruff-Fenton aldose degradation -- 2.45 Robinson annulation reaction -- 2.46 Rosenmund reaction -- 2.47 Shapiro reaction -- 2.47.1 Selectivity in Shapiro reaction -- 2.48 Stobbe condensation reaction -- 2.49 Stork enamine alkylation -- 2.50 Tebbe reaction -- 2.51 Tishchenko reaction -- 2.52 Tollens reaction -- 2.53 Wittig reaction -- 2.53.1 Methods for the formation of phosphonium ylide -- 2.53.2 Stereochemistry of Wittig reaction -- 2.54 Wolff-Kishner reduction -- References -- Further reading -- 3 Reaction of alcohols -- 3.1 Barton-McCombie deoxygenation -- 3.2 Baeyer-Villiger aromatic tritylation -- 3.3 Corey-Winter olefin synthesis -- 3.4 Corey-Chan synthesis -- 3.5 Gattermann synthesis reaction -- 3.6 Grieco olefination of alcohols -- 3.7 Houben-Hoesch reaction -- 3.8 Kolbe-Schmitt reaction -- 3.9 Mitsunobu reaction -- 3.9.1 Stereochemistry of Mitsunobu reaction -- 3.10 Moffatt oxidation -- 3.11 Mukaiyama-Ueno oxidation -- 3.12 Reimer-Tiemann reaction -- 3.13 Ritter reaction -- 3.14 Swern oxidation reaction -- 3.15 Sharpless asymmetric epoxidation -- 3.16 Sharpless asymmetric dihydroxylation -- 3.17 Simmons-Smith cyclopropanation -- 3.17.1 Stereochemistry of Simmons-Smith reaction -- 3.17.2 Selectivity of Simmons-Smith reaction -- 3.17.3 Reactivity of reactants for Simmons-Smith reaction -- 3.17.4 Directed Simmons-Smith reaction -- References -- 4 Reactions of heterocyclic compounds -- 4.1 Algar-Flynn-Oyamada reaction. , 4.1.1 Formation of other products [a side reaction (by-product)] -- 4.2 Bischler-Mohlau indole synthesis -- 4.3 Camps quinoline synthesis -- 4.4 Chichibabin reaction -- 4.5 Clauson-Kaas pyrrole synthesis -- 4.6 Combes quinoline synthesis -- 4.6.1 Electrocyclic mechanism -- 4.7 Dimroth triazole synthesis -- 4.8 Finnegan tetrazole synthesis -- 4.9 Fischer indole synthesis -- 4.10 Hantzsch pyrrole synthesis -- 4.11 Hantzsch thiazole synthesis -- 4.12 Knorr pyrrole synthesis -- 4.13 MacDonald porphyrin synthesis -- 4.14 Madelung indole synthesis -- 4.15 Pfitzinger quinoline synthesis -- 4.16 Pomeranz-Fritsch-Schlitter isoquinoline synthesis -- 4.17 Reissert indole synthesis -- 4.18 Skraup synthesis -- References -- 5 Coupling reactions -- 5.1 Buchwald-Hartwig coupling -- 5.2 Fukuyama thioester coupling -- 5.2.1 Catalytic cycle of Fukuyama thioester coupling reaction -- 5.3 Furstner iron-catalyzed C=C coupling -- 5.4 Glaser-Sondheimer acetylene coupling -- 5.5 Hiyama coupling -- 5.5.1 Catalytic cycle of Hiyama coupling reaction -- 5.6 Heck coupling -- 5.6.1 Examples of Heck coupling reactions -- 5.6.2 Intramolecular Heck coupling reaction -- 5.6.3 Catalytic cycle of Heck coupling reactions -- 5.7 Knochel coupling -- 5.8 Kumada coupling -- 5.8.1 Reactivity of halogens for Kumada coupling reaction -- 5.8.2 Catalytic cycle of Kumada coupling reaction -- 5.9 McMurry coupling -- 5.10 Negishi coupling -- 5.10.1 Catalytic cycle of Negishi coupling reaction -- 5.11 Sonogashira coupling -- 5.11.1 Catalytic cycle of Sonogashira coupling reaction -- 5.12 Stille coupling -- 5.12.1 Catalytic cycle of Stille coupling -- 5.12.2 Catalytic cycle in the presence of CO -- 5.13 Suzuki coupling -- 5.13.1 Reactivity of substrate for Suzuki coupling reaction -- 5.13.2 Catalytic cycle of Suzuki coupling reactions -- 5.14 Castro-Stephens acetylene coupling -- References. , 6 Rearrangements, participation, and fragmentation reactions -- 6.1 Arndt-Eistert homologation -- 6.2 Beckmann rearrangement -- 6.2.1 Stereochemistry of Beckmann rearrangement -- 6.2.2 Beckmann fragmentation -- 6.3 Benzidine rearrangement -- 6.4 Benzil-benzilic acid rearrangement -- 6.4.1 Rate of reaction -- 6.5 Brook rearrangement -- 6.5.1 Characteristics -- 6.6 Sigmatropic rearrangements -- 6.6.1 Aza-Cope rearrangements -- 6.6.2 Claisen rearrangement -- 6.6.2.1 Conditions for Claisen rearrangement -- 6.6.3 Cope rearrangement -- 6.6.3.1 Condition for Cope rearrangement - -- 6.6.4 Intramolecular aldol condensation -- 6.6.5 Ireland-Claisen rearrangement -- 6.6.6 Oxy-Cope rearrangements -- 6.7 Carroll allyl β-ketoester rearrangement -- 6.8 Chan acyloxyacetic ester rearrangement -- 6.9 Curtius rearrangement -- 6.10 Demjanov diazonium rearrangement -- 6.11 Eschenmoser fragmentation reaction -- 6.12 Favorskii rearrangement -- 6.12.1 Favorskii rearrangement in cyclic ketones -- 6.13 Fries rearrangement -- 6.13.1 Reason for the o-isomer to be a major product -- 6.13.2 Conditions for Fries rearrangement -- 6.14 Grob fragmentation -- 6.15 Hofmann rearrangement -- 6.16 Lossen rearrangement -- 6.17 Nazarov cyclization -- 6.18 Neber rearrangement -- 6.19 Photo-Fries rearrangement -- 6.20 Pschorr cyclization -- 6.21 Payne rearrangement -- 6.22 Semipinacol rearrangement -- 6.23 Schmidt rearrangement -- 6.24 Smiles rearrangement -- 6.25 Sommelet-Hauser rearrangement -- 6.26 Tiffeneau-Demjanov ring expansion -- 6.27 von Richter rearrangement -- 6.28 Wagner-Meerwein rearrangement -- 6.29 Wittig rearrangement -- 6.30 Wolff rearrangement -- 6.30.1 Nature of 1,2 migration -- 6.31 Zimmerman Di-π methane rearrangement -- 6.31.1 Stereochemistry of Di-π methane rearrangement -- 6.31.2 Selectivity in the breaking of cyclopropane ring -- References. , 7 Reaction of amines, carboxylic acid, and derivatives.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Organometallic compounds. ; Organometallic compounds-Analysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (445 pages)
    Edition: 1st ed.
    ISBN: 9783527840939
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- Chapter 1 Organometallic Compounds: The Fundamental Aspects -- 1.1 Introduction -- 1.1.1 Organometallic Chemistry -- 1.1.2 Organometallic Compounds -- 1.1.3 Structure of Organometallic Compound -- 1.2 Milestones in Organometallic Compounds -- 1.2.1 Equation (1.1): Synthesis of First Organometallic Compound -- 1.2.2 Equation (1.2): Preparation of Zeise's Salt -- 1.2.3 Equations (1.3)-(1.5): Preparation of Organochlorosilane Compound -- 1.2.4 Equation (1.6): Synthesis of First Metal Carbonyl Compound -- 1.2.5 Equation (1.7): Synthesis of First Binary Metal Carbonyl Complex -- 1.2.6 Equation (1.8): Barbier Reaction -- 1.2.7 Equation (1.9): Synthesis of Organic Compound Using a Grignard Reagent -- 1.2.8 Equations (1.10) and (1.11): Synthesis of Alkyllithium Compound -- 1.2.9 Equations (1.12) and (1.13): Synthesis of Organolithium Compound -- 1.2.10 Equation (1.14): Hydroformylation Reaction -- 1.2.11 Equation (1.15): Synthesis of Organochlorosilane Compound -- 1.2.12 Equation (1.16): Trimerization of Acetylene -- 1.2.13 Equation (1.17): Synthesis of Ferrocene -- 1.2.14 Equation (1.18): Asymmetric Catalysis Reaction -- 1.2.15 Equation (1.19): Palladium Catalyzed Suzuki Coupling Reaction -- 1.2.16 Equation (1.20): Synthesis of Bucky Ferrocene -- 1.3 Stability of Organometallic Compounds -- 1.4 Properties of Organometallic Compounds -- 1.5 Basic Concepts in Organometallic Compounds -- 1.5.1 18‐Electron Rule -- 1.5.1.1 Statement of 18 Electron Rule -- 1.5.1.2 Examples -- 1.5.2 Π -Back Bonding or Back Donation -- 1.5.3 Hapticity ηx -- 1.6 Hapticity of Ligands -- 1.7 Change in Hapticity -- 1.8 Hapticity Verses Denticity -- 1.9 Counting of Electrons and Finding out Metal-Metal Bonds -- 1.9.1 Calculating the Number of Metal-Metal Bonds. , 1.9.2 Writing the Probable Structure of Compound -- 1.9.3 How to Draw the Probable Structure of Ni(η1‐C3H5) (η3‐C3H5) -- 1.9.4 How to Draw the Probable Structure of (μ‐CO)‐[η5‐CpRh]3(CO) -- 1.10 Metals of Organometallic Compounds -- 1.10.1 Organometallic Compounds of Transition Metals -- 1.10.2 The Bonding and Structure in Different Metal complexes -- 1.10.2.1 Alkene Complexes -- 1.10.2.2 Allyl Complexes -- 1.10.2.3 Carbonyl Complexes -- 1.10.2.4 Metallocenes -- 1.10.2.5 Dihydrogen Complexes -- 1.10.2.6 Transition Metal Carbene Complex -- 1.11 Importance of Organometallic Compounds -- 1.11.1 Types of Organometallic Compounds -- 1.11.2 Uses of Organometallic Compounds -- 1.12 Conclusions -- References -- Chapter 2 Nomenclature of Organometallic Compounds -- 2.1 Introduction -- 2.2 Aim of the Nomenclature -- 2.3 Type of Nomenclature System -- 2.3.1 Binary Nomenclature -- 2.3.2 Substitutive Nomenclature -- 2.3.3 Additive Nomenclature or Coordination nomenclature -- 2.4 Concepts and Conventions -- 2.4.1 Oxidation Number -- 2.4.2 Coordination Number -- 2.4.3 Chelation -- 2.4.4 Ligands -- 2.4.5 Specifying Connectivity - The Kappa (κ) Convention -- 2.4.6 Bridging Ligands - The Mu (μ) Convention -- 2.4.7 Hapticity - The Eta (η) Convention -- 2.5 Regulations Concerning the Nomenclature of Transition Element Organometallic Compounds -- References -- Chapter 3 Classification of Organometallic Compounds -- 3.1 Introduction -- 3.2 Classification of Organometallic Compound -- 3.2.1 Sigma‐Bonded Organometallic Compound -- 3.2.2 π‐Bonded Organometallic Compounds -- 3.2.3 Ionic Bonded Organometallic Compounds -- 3.2.4 Multicentered Bonded Organometallic Compounds -- 3.2.4.1 Based on Heptacity (η1 to η8): -- 3.3 Grignard Reagent (G.R.) -- 3.3.1 Physical Properties -- 3.3.2 Chemical Properties -- 3.3.2.1 Alkanes -- 3.3.2.2 Alkenes -- 3.3.2.3 Alkynes -- 3.3.2.4 Ethers. , 3.3.2.5 Reaction with carbon dioxide -- 3.3.2.6 Insertion Reaction -- 3.3.2.7 Synthesis of Silicones -- 3.3.2.8 Nucleophilic Substitution -- 3.4 Organozinc Compounds -- 3.4.1 Physical Properties -- 3.4.2 Chemical Properties -- 3.5 Organolithium Compounds -- 3.5.1 Reaction Resembling Grignard Reagents -- 3.5.2 Reactions Different from Grignard Reagents -- 3.6 Organosulfur Compounds -- 3.6.1 Physical Properties -- 3.6.2 Chemical Properties -- 3.6.3 Properties Different from Alcohols -- 3.7 Conclusion -- References -- Chapter 4 Synthesis Methods of Organometallic Compounds -- 4.1 Introduction -- 4.2 Synthesis Methods of Organometallic Compounds -- 4.2.1 Electrochemical Methods for the Synthesis of Organometallic Compounds -- 4.2.1.1 Synthesis of Cyano Cu(I) Complexes in the Electrochemical Cell -- 4.2.1.2 Synthesis of an Organorhenium Cyclopentadienyl Complex in the Electrochemical Cell -- 4.2.1.3 Synthesis of N‐heterocyclic Carbene Complexes in the Electrochemical Cell -- 4.2.1.4 Synthesis of Organocopper (I) π‐Complexes in the Electrochemical Cell -- 4.2.1.5 Synthesis of Organonickel σ‐Complexes in the Electrochemical Cell -- 4.2.2 Synthesis of Organic Compounds in the Electrochemical Cell by Metal organic Catalysts -- 4.2.2.1 The Synthesis of Organic Compounds in the Electrochemical Cell by the Ni‐Organic Catalyze -- 4.2.2.2 The Synthesis of Organic Compounds in the Electrochemical Cell by the Pd‐Organic Catalyses -- 4.2.2.3 Synthesis of Organic Compounds in the Electrochemical Cell by the Sm‐Organic Catalyses -- 4.2.3 Synthesis of Organometallic Nucleosides -- 4.2.3.1 A Category: Main Compounds -- 4.2.3.2 A1 Subcategory: Main Compounds -- 4.2.3.3 B Category: Main Compounds -- 4.2.3.4 C Category: Main Compounds -- 4.2.3.5 C1 Subcategory: Main Compounds -- 4.2.3.6 D Categories: Main Compounds -- 4.3 Conclusions -- Acknowledgment. , Authors Contributions -- Conflicts of Interest -- References -- Chapter 5 Metal Carbonyls: Synthesis, Properties, and Structure -- 5.1 Introduction -- 5.2 Classification of Metal Carbonyls -- 5.2.1 Classification Based on Coordinated Ligands -- 5.2.1.1 Homoleptic Carbonyls -- 5.2.1.2 Heteroleptic Carbonyls -- 5.2.2 Classification Based on Number of Metals and the Constitution of Carbonyls -- 5.2.2.1 Mononuclear Carbonyl Complexes -- 5.2.2.2 Polynuclear Carbonyl Complexes -- 5.3 Synthesis of Metal Carbonyls -- 5.3.1 Direct Reaction of Metal with Carbon Monoxide -- 5.3.2 Reductive Carbonylation -- 5.3.3 Photolysis and Thermolysis -- 5.3.4 Abstraction of CO from a Reactive Organic Carbonyl Compounds -- 5.4 Properties of Metal Carbonyls -- 5.4.1 Physical Properties -- 5.4.2 Chemical Properties -- 5.4.2.1 Ligand Substitution Reactions -- 5.4.2.2 Reaction with Sodium Metal -- 5.4.2.3 Reaction with Sodium Hydroxide -- 5.4.2.4 Reaction with Halogens -- 5.4.2.5 Reaction with Hydrogen -- 5.4.2.6 Reaction with Nitricoxide (NO) -- 5.4.2.7 Disproportionation -- 5.5 Structure of Metal Carbonyls -- 5.5.1 Structures of Some Mononuclear Carbonyl Complexes -- 5.5.2 Structures of Some Bi and Polynuclear Carbonyl Complexes -- 5.6 Bonding in Metal Carbonyls -- 5.6.1 Formation of Mixed Atomic Orbitals -- 5.7 Synergistic Effect -- 5.8 Conclusion -- Further Reading -- References -- Chapter 6 Metal-Carbon Multiple Bonded Compounds -- 6.1 Introduction -- 6.2 Nomenclature -- 6.3 Classifications -- 6.3.1 Metal-alkylidene Complexes -- 6.3.2 Metal-alkylidyne Complexes -- 6.4 Structure -- 6.4.1 Alkylidene (Carbene) -- 6.4.2 Carbyne (Alkylidyne) -- 6.5 Preparation Methods -- 6.5.1 Metal-alkylidene Complexes -- 6.5.1.1 By Nucleophilic Carbene -- 6.5.1.2 By Electrophilic Alkylidenes -- 6.5.2 Metal-alkylidyne Complexes -- 6.6 Important Reactions. , 6.6.1 Reaction of Alkylidene Metathesis -- 6.6.2 Important Reaction of Alkylidyne Metathesis -- 6.7 Applications -- References -- Chapter 7 Metallocene: Synthesis, Properties, and Structure -- 7.1 Introduction -- 7.2 Structure of Metallocene -- 7.3 Synthesis of Metallocene -- 7.4 Chemical Properties of Metallocene -- 7.4.1 Ferrocene and Its Derivatives -- 7.4.2 Other Metallocene Sandwiches -- 7.4.3 Main‐group Metallocene -- 7.4.4 Metal-bis‐arene Sandwich Complexes -- 7.4.4.1 General View -- 7.4.4.2 Structure -- 7.4.4.3 Reactions -- 7.5 Conclusion -- References -- Chapter 8 σ‐Complexes, π‐Complexes, and ηn‐CnRn Carbocyclic Polyenes‐Based Organometallic Compounds -- 8.1 Introduction -- 8.2 σ‐Bond Containing Organometallic Compounds -- 8.2.1 Metal Carbonyl -- 8.2.1.1 General Overview -- 8.2.1.2 Syntheses of Metal Carbonyls -- 8.2.1.3 Structure of Metal Carbonyls -- 8.2.1.4 Reactions of Metal Carbonyls -- 8.2.2 Metal-Alkyl, -Vinyl, and -Hydride Complexes -- 8.2.2.1 Metal Alkyls -- 8.2.2.2 Metal Vinyls -- 8.2.2.3 Metal Hydrides -- 8.2.2.4 Metal-Carbene Complexes -- 8.3 π‐Bond Containing Organometallic Compounds -- 8.3.1 Metal-Olefin Complexes -- 8.3.1.1 General Overview -- 8.3.1.2 Syntheses of Metal-Olefin Complexes -- 8.3.1.3 Reactions of Metal-Olefin Complexes -- 8.3.2 Metal-Diene Complexes -- 8.3.3 Metal-Alkyne Complexes -- 8.3.4 π-Allyl Complexes -- 8.3.4.1 Structure of π-Allyl Complexes -- 8.3.4.2 Syntheses of π-Allyl Complexes -- 8.3.4.3 Reactions of π-Allyl Complexes -- 8.4 ηn‐CnRn Carbocyclic Polyenes Containing Organometallic Compounds -- 8.4.1 Cyclopropenyls, η3‐C3R3 -- 8.4.2 Cyclobutadienes, η4‐C4R4 -- 8.4.3 Cyclopentadienyls, η5‐C5R5 -- 8.4.3.1 General Overview -- 8.4.3.2 Structure of Metallocene -- 8.4.3.3 Syntheses of Metallocene -- 8.4.3.4 Chemical Properties of Metallocene -- 8.4.3.5 Applications of Metallocene -- 8.5 Conclusion. , References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...