GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Inorganic compounds-Analysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (426 pages)
    Edition: 1st ed.
    ISBN: 9780323904117
    DDC: 661
    Language: English
    Note: Front Cover -- Inorganic Anticorrosive Materials -- Copyright Page -- Contents -- List of contributors -- I. Overview on metal oxides -- 1 Nanomaterials as corrosion inhibitors -- 1.1 Introduction -- 1.1.1 Corrosion and its consequences -- 1.1.2 Corrosion inhibition -- 1.2 Nanomaterials -- 1.2.1 General introduction, types, and synthesis methods -- 1.2.1.1 Bottom-up method -- 1.2.1.2 Top-down approach -- 1.2.2 Characterization of nanomaterials -- 1.3 Nanomaterials as anticorrosive materials -- 1.3.1 Metal/metal oxide nanoparticles as corrosion inhibitors -- 1.3.2 Quantum dots as corrosion inhibitors -- 1.3.3 Nanotubes as corrosion inhibitors -- 1.3.4 Nanofibers as corrosion inhibitors -- 1.3.5 Nano containers as corrosion inhibitors -- 1.3.6 Nanocomposites as corrosion inhibitors -- 1.4 Challenges facing the use of nanomaterials as corrosion inhibitors -- 1.4.1 Toxicity -- 1.4.2 Agglomeration -- 1.4.3 Prediction of mechanism -- 1.5 Conclusion -- 1.6 Future research directions -- Useful links -- References -- 2 Metal oxides: Advanced inorganic materials -- 2.1 Outline of chapter -- 2.2 Introduction to metal oxide and its materials -- 2.2.1 Inorganic oxides -- 2.2.2 Metal oxide -- 2.2.3 Mixed metal oxide -- 2.2.4 Nanotechnology -- 2.3 Synthetic methodologies of metal oxides -- 2.3.1 Physical methods -- 2.3.1.1 Physical vapor deposition -- 2.3.1.2 Milling -- 2.3.1.3 Spray pyrolysis -- 2.3.1.4 Laser ablation -- 2.3.1.5 Inert gas condensation -- 2.3.1.6 Arc discharge -- 2.3.1.7 Thermolysis -- 2.3.2 Chemical methods -- 2.3.2.1 Sol-gel method -- 2.3.2.2 Chemical vapor deposition -- 2.3.2.3 Polyol method -- 2.3.2.4 Electrochemical synthesis -- 2.3.2.5 Sonochemical synthesis -- 2.3.3 Green synthesis or biological methods -- 2.3.3.1 Green synthesis using plant extracts -- 2.3.3.2 Green synthesis using microorganisms. , 2.3.3.3 Green synthesis using biomolecules -- 2.4 Fundamental science and properties of nanometal oxide as advanced material -- 2.4.1 Properties of nanoparticulated oxides -- 2.4.1.1 Optical properties-surface plasmon resonance -- 2.4.1.2 Transport properties -- 2.4.1.3 Mechanical properties -- 2.4.1.4 Chemical properties -- 2.4.1.5 Quantum effects -- 2.5 Review of metal oxide nanomaterials used for varied applications in different fields of research -- 2.6 Application, discussion and future claims -- 2.6.1 Environmental and solar applications -- 2.6.2 Corrosion and electrochemical applications -- 2.6.2.1 Corrosion of Steel in Acidic Solution and Inhibition Mechanism -- 2.6.2.2 Mechanism -- 2.6.2.3 Potential with zero charge -- 2.6.2.4 Factors affecting the efficiency of inhibitors -- 2.6.2.4.1 Disperability-nano metal oxide -- 2.6.3 Biomedical applications -- 2.6.3.1 Drug delivery -- 2.7 Conclusion -- References -- 3 Molecularly imprinted magnetite nanomaterials and its application as corrosion inhibitors -- 3.1 Introduction -- 3.1.1 Effects of coating on magnetite by the silica (Fe3O4/SiO2) nanomaterials -- 3.1.2 Molecularly imprinted nanomaterials (Fe3O4/SiO2/Thermosensitive/EDTA) -- 3.1.2.1 Coupling of chitosan on functionalized EDTA graftted thermosensetive modified magnetite molecularly imprinted nanom... -- 3.1.3 General principle of molecularly imprinted nanomaterials -- 3.1.4 Structure of magnetite nanomaterials -- 3.2 Distinctive synthetic approach of molecularly imprinted magnetite nanomaterials -- 3.2.1 Coprecipitation method -- 3.2.2 Reverse micellar method -- 3.2.3 Sonochemical technique -- 3.2.4 Hydrothermal technique -- 3.2.5 Thermal decomposition technique -- 3.2.6 Sol-gel technique -- 3.3 Functionalization of molecularly imprinted magnetite nanoparticles -- 3.3.1 Silica -- 3.3.2 Metal or nonmetal. , 3.3.3 Metal oxides and metal sulfides -- 3.3.4 Coating of organic compounds on the surface of the magnetite nanoparticles -- 3.3.5 Polymers -- 3.3.6 Biological molecules -- 3.4 Characterization techniques -- 3.4.1 XRD analysis -- 3.4.2 Surface morphology and elemental analysis -- 3.4.3 Vibrating sample magnetometer -- 3.4.4 Dynamic light scattering -- 3.5 Conclusions -- Author declaration -- References -- Further reading -- 4 Basics of metal oxides: properties and applications -- 4.1 Introduction -- 4.2 Properties of metal oxide -- 4.3 Application of metal oxides -- 4.3.1 Cupric oxide -- 4.3.2 Zinc oxide (ZnO) -- 4.3.3 Cobolt oxide (II, III)/Co3O4 -- 4.4 Titanium oxide -- 4.5 Conclusion and future directions -- References -- 5 Recent developments in properties and applications of metal oxides -- 5.1 Introduction -- 5.2 Properties of metal oxides nanoparticles -- 5.3 Diverse applications of metal oxides nanoparticles -- 5.3.1 Gas sensing -- 5.3.2 Batteries -- 5.3.3 Solar cells -- 5.4 Supercapacitor -- 5.4.1 Anticorrosive -- 5.4.2 Photocatalysis -- 5.4.3 Basic principle of TiO2 based photocatalysts -- 5.5 Summary -- References -- 6 Functionally integrated metal oxides for corrosion protection -- 6.1 Introduction -- 6.2 Corrosion protection process -- 6.3 Electrochemical characterization and evaluation techniques -- 6.3.1 Open circuit potential -- 6.3.2 Polarization techniques -- 6.3.2.1 Linear polarization resistance -- 6.3.2.2 Potentiodynamic polarization -- 6.3.2.3 Tafel extrapolation method -- 6.3.2.4 Cyclic polarization -- 6.3.3 Electrochemical impedance spectroscopy -- 6.4 Different transition metals and their characteristics -- 6.4.1 Titanium dioxide (TiO2) -- 6.4.2 Zirconium dioxide (ZrO2) -- 6.4.3 Zinc oxide (ZnO) -- 6.4.4 MoO2 and MoO3 -- 6.5 Coating techniques for the synthesis of corrosion protection -- 6.5.1 Physical vapor deposition. , 6.5.2 Chemical vapor deposition -- 6.5.3 Microarc oxidation -- 6.5.4 Electrodeposition coating -- 6.5.5 Sol-gel coating -- 6.5.6 Thermal spray coating -- 6.5.7 High-velocity oxy-fuel coating -- 6.5.8 Plasma spray coating -- 6.6 Factors affecting the efficiency of mixed metal oxide as corrosion protection -- 6.7 Mixed metal oxide coatings studied for corrosion protection -- 6.7.1 TiO2-ZnO -- 6.7.2 TiO2-ZrO2 -- 6.7.3 MoO2-ZrO2, MoO2-TiO2 -- 6.7.4 Early studies for trimetallic oxides ZrO2-ZnO-TiO2 -- 6.8 Summary -- Useful links -- References -- 7 A prospective utilization of metal oxides for self-cleaning and antireflective coatings -- 7.1 Introduction -- 7.1.1 Classification of metal oxides -- 7.1.1.1 Ferroelectric metal oxides -- 7.1.1.2 Magnetic metal oxides -- 7.1.1.3 Multiferroic metal oxides -- 7.1.2 Nanocomposite metal oxides -- 7.1.3 Properties of metal oxides -- 7.2 Electrical and dielectric properties -- 7.3 Electrochemical properties -- 7.3.1 Metal oxides as self-cleaning and antireflective coatings -- 7.3.2 Application of metal oxides -- 7.3.2.1 Biomedical and healthcare -- 7.3.2.2 Solar energy -- 7.3.2.3 Water purification membranes -- 7.3.2.4 Application in machining and automotive -- 7.4 Conclusion -- References -- II. Metal oxides as corrosion inhibitors -- 8 CeO as corrosion inhibitors -- 8.1 An overview -- 8.2 Cerium (IV) oxide as corrosion inhibitor -- 8.3 Utilization of cerium IV oxide as corrosion inhibitor in the past decade -- Useful links -- References -- 9 Utilization of ZnO-based materials as anticorrosive agents: a review -- 9.1 Introduction -- 9.1.1 Corrosion inhibitors and coatings -- 9.2 Properties of ZnO -- 9.2.1 Corrosion resistance of ZnO nanoparticles -- 9.3 Corrosion resistance of ZnO-based corrosion inhibitors -- 9.4 Corrosion resistance of ZnO-based nanocomposite coatings. , 9.5 Corrosion resistance of ZnO/mixed nanocomposites -- 9.6 Conclusion -- Useful links -- References -- 10 MgO as corrosion inhibitor -- 10.1 Introduction -- 10.2 Synthesis, properties and applications of magnesium oxide -- 10.3 Application of MgO and its composites as a corrosion inhibitor for the protection of metallic materials -- 10.4 Application of MgO and its composites as corrosion inhibitors for the protection of magnesium alloy -- 10.5 Application of MgO and its composites as corrosion inhibitors for the protection of iron and its alloys -- 10.6 Application of MgO and its composites as corrosion inhibitors for protection of cemented carbide -- 10.7 Application of MgO and its composites as corrosion inhibitors for the protection of metallic materials in bioscience -- 10.8 ZnMgO solid solution nanolayer as anticorrosion material -- 10.9 Drawbacks -- 10.10 Conclusion and future perspective -- References -- 11 Copper oxide as a corrosion inhibitor -- 11.1 Introduction -- 11.2 Metallic deterioration and its protection from corrosive environment -- 11.3 Copper oxide as corrosion inhibitor -- 11.4 Summary and future perspective -- References -- 12 Corrosion inhibition by aluminum oxide -- 12.1 Introduction -- 12.2 What is corrosion? -- 12.3 Consequences of corrosion -- 12.4 Methods of controlling corrosion -- 12.5 Corrosion inhibitors -- 12.5.1 Definition of corrosion inhibitors -- 12.5.2 Classification -- 12.5.2.1 Organic inhibitors -- 12.5.2.2 Inorganic inhibitors -- 12.6 Aluminum oxide -- 12.6.1 Influence of pH on aluminum passivation -- 12.6.2 Mechanism of corrosion of aluminum -- 12.7 Potential - pH diagrams -- 12.8 Case study -- 12.8.1 Inhibition of corrosion of aluminum in well water by polyvinyl alcohol, carboxymethyl cellulose, and Zn2+ -- 12.8.2 Electrochemical studies -- 12.8.2.1 Polarization study. , 12.8.2.1.1 Aluminum in well water system (pH 10, adjusted with NaOH).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (409 pages)
    Edition: 1st ed.
    ISBN: 9783527844470
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Preface -- Chapter 1 Ultrasound Irradiation: Fundamental Theory, Electromagnetic Spectrum, Important Properties, and Physical Principles -- 1.1 Introduction -- 1.2 Cavitation History -- 1.2.1 Basics of Cavitation -- 1.2.2 Types of Cavitation -- 1.3 Application of Ultrasound Irradiation -- 1.3.1 Sonoluminescence and Sonophotocatalysis -- 1.3.2 Industrial Cleaning -- 1.3.3 Material Processing -- 1.3.4 Chemical and Biological Reactions -- 1.4 Conclusion -- Acknowledgments -- References -- Chapter 2 Fundamental Theory of Electromagnetic Spectrum, Dielectric and Magnetic Properties, Molecular Rotation, and the Green Chemistry of Microwave Heating Equipment -- 2.1 Introduction -- 2.1.1 Historical Background -- 2.1.2 Green Chemistry Principles for Sustainable System -- 2.2 Fundamental Concepts of the Electromagnetic Spectrum Theory -- 2.3 Electrical, Dielectric, and Magnetic Properties in Microwave Irradiation -- 2.4 Microwave Irradiation Molecular Rotation -- 2.5 Fundamentals of Electromagnetic Theory in Microwave Irradiation -- 2.5.1 Electromagnetic Radiations and Microwave -- 2.5.2 Heating Mechanism of Microwave: Conventional Versus Microwave Heating -- 2.6 Physical Principles of Microwave Heating and Equipment -- 2.7 Green Chemistry Through Microwave Heating: Applications and Benefits -- 2.8 Conclusion -- References -- Chapter 3 Conventional Versus Green Chemical Transformation: MCRs, Solid Phase Reaction, Green Solvents, Microwave, and Ultrasound Irradiation -- 3.1 Introduction -- 3.2 A Brief Overview of Green Chemistry -- 3.2.1 Definition and Historical Background -- 3.2.2 Significance -- 3.3 Multicomponent Reactions -- 3.4 Solid Phase Reactions -- 3.5 Microwave Induced Synthesis -- 3.6 Ultrasound Induced Synthesis -- 3.7 Green Chemicals and Solvents. , 3.8 Conclusions and Outlook -- References -- Chapter 4 Metal‐Catalyzed Reactions Under Microwave and Ultrasound Irradiation -- 4.1 Ultrasonic Irradiation -- 4.1.1 Iron‐Based Catalysts -- 4.1.2 Copper‐Based Catalysts -- 4.1.2.1 Dihydropyrimidinones by Cu‐Based Catalysts -- 4.1.2.2 Dihydroquinazolinones by Cu‐Based Catalysts -- 4.1.3 Misalliances Metal‐Based Catalysts -- 4.2 Microwave‐Assisted Reactions -- 4.2.1 Solid Acid and Base Catalysts -- 4.2.1.1 Condensation Reactions -- 4.2.1.2 Cyclization Reactions -- 4.2.1.3 Multi‐component Reactions -- 4.2.1.4 Friedel-Crafts Reactions -- 4.2.1.5 Reaction Involving Catalysts of Biological Origin -- 4.2.1.6 Reduction -- 4.2.1.7 Oxidation -- 4.2.1.8 Coupling Reactions -- 4.2.1.9 Micelliances Reactions -- 4.2.1.10 Click Chemistry -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Microwave‐ and Ultrasonic‐Assisted Coupling Reactions -- 5.1 Introduction -- 5.2 Microwave -- 5.2.1 Microwave‐Assisted Coupling Reactions -- 5.2.2 Ultrasound‐Assisted Coupling Reactions -- 5.3 Conclusion -- References -- Chapter 6 Synthesis of Heterocyclic Compounds Under Microwave Irradiation Using Name Reactions -- 6.1 Introduction -- 6.2 Classical Methods for Heterocyclic Synthesis Under Microwave Irradiation -- 6.2.1 Piloty-Robinson Pyrrole Synthesis -- 6.2.2 Clauson-Kaas Pyrrole Synthesis -- 6.2.3 Paal-Knorr Pyrrole Synthesis -- 6.2.4 Paal-Knorr Furan Synthesis -- 6.2.5 Paal-Knorr Thiophene Synthesis -- 6.2.6 Gewald Reaction -- 6.2.7 Fischer Indole Synthesis -- 6.2.8 Bischler-Möhlau Indole Synthesis -- 6.2.9 Hemetsberger-Knittel Indole Synthesis -- 6.2.10 Leimgruber-Batcho Indole Synthesis -- 6.2.11 Cadogan-Sundberg Indole Synthesis -- 6.2.12 Pechmann Pyrazole Synthesis -- 6.2.13 Debus-Radziszewski Reaction -- 6.2.14 van Leusen Imidazole Synthesis -- 6.2.15 van Leusen Oxazole Synthesis. , 6.2.16 Robinson-Gabriel Reaction -- 6.2.17 Hantzsch Thiazole Synthesis -- 6.2.18 Einhorn-Brunner Reaction -- 6.2.19 Pellizzari Reaction -- 6.2.20 Huisgen Reaction -- 6.2.21 Finnegan Tetrazole Synthesis -- 6.2.22 Four‐component Ugi‐azide Reaction -- 6.2.23 Kröhnke Pyridine Synthesis -- 6.2.24 Bohlmann-Rahtz Pyridine Synthesis -- 6.2.25 Boger Reaction -- 6.2.26 Skraup Reaction -- 6.2.27 Gould-Jacobs Reaction -- 6.2.28 Friedländer Quinoline Synthesis -- 6.2.29 Povarov Reaction -- 6.3 Conclusion -- Acknowledgments -- References -- Chapter 7 Microwave‐ and Ultrasound‐Assisted Enzymatic Reactions -- 7.1 Introduction -- 7.2 Influence Microwave Radiation on the Stability and Activity of Enzymes -- 7.3 Principle of Ultrasonic‐Assisted Enzymolysis -- 7.4 Applications of Ultrasonic‐Assisted Enzymolysis -- 7.4.1 Proteins and Other Plant Components Can Be Transformed and Extracted -- 7.4.2 Modification of Protein Functionality -- 7.4.3 Enhancement of Biological Activity -- 7.4.4 Ultrasonic‐Assisted Acceleration of Hydrolysis Time -- 7.5 Enzymatic Reactions Supported by Ultrasound -- 7.5.1 Lipase -- 7.5.2 Protease -- 7.5.3 Polysaccharide Enzymes -- 7.6 Biodiesel Production via Ultrasound‐Supported Transesterification -- 7.6.1 Homogenous Acid‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.2 Transesterification with Ultrasound Assistance and Homogenous Base Catalysis -- 7.6.3 Heterogeneous Acid‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.4 Heterogeneous Base‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.6.5 Enzyme‐Catalyzed Ultrasound‐Assisted Transesterification -- 7.7 Conclusions -- Acknowledgments -- References -- Chapter 8 Microwave‐ and Ultrasound‐Assisted Synthesis of Polymers -- 8.1 Introduction -- 8.2 Microwave‐Assisted Synthesis of Polymers -- 8.3 Ultrasound‐Assisted Synthesis of Polymers -- 8.4 Conclusion -- References. , Chapter 9 Synthesis of Nanomaterials Under Microwave and Ultrasound Irradiation -- 9.1 Introduction -- 9.2 Synthesis of Metal Nanoparticles -- 9.3 Synthesis of Carbon Dots -- 9.4 Synthesis of Metal Oxides -- 9.5 Synthesis of Silicon Dioxide -- 9.6 Conclusion -- References -- Chapter 10 Microwave‐ and Ultrasound‐Assisted Synthesis of Metal‐Organic Frameworks (MOF) and Covalent Organic Frameworks (COF) -- 10.1 Introduction -- 10.2 Principles -- 10.2.1 Principles of Microwave Heating -- 10.2.2 Principle of Ultrasound‐Assisted Techniques -- 10.2.3 Advantages and Disadvantages of Microwave‐ and Ultrasound‐Assisted Techniques -- 10.3 MOF Synthesis by Microwave and Ultrasound Method -- 10.3.1 Microwave‐Assisted Synthesis of MOF -- 10.3.2 Ultrasound‐Assisted Synthesis of MOFs -- 10.4 Factors That Affect MOF Synthesis -- 10.4.1 Solvent -- 10.4.2 Temperature and pH -- 10.5 Application of MOF -- 10.6 COF Synthesis by Microwave and Ultrasound Method -- 10.6.1 Ultrasound‐Assisted Synthesis of COFs -- 10.6.2 Microwave‐Assisted Synthesis of COF -- 10.6.3 Structure of COF (2D and 3D) -- 10.7 Factors Affecting the COF Synthesis -- 10.8 Applications of COFs -- 10.9 Future Predictions -- 10.10 Summary -- Acknowledgments -- References -- Chapter 11 Solid Phase Synthesis Catalyzed by Microwave and Ultrasound Irradiation -- 11.1 Introduction -- 11.2 Wastewater Treatment -- 11.3 Biodiesel Production -- 11.4 Oxygen Reduction Reaction -- 11.5 Alcoholic Fuel Cells -- 11.6 Conclusion and Future Plans -- References -- Chapter 12 Comparative Studies on Thermal, Microwave‐Assisted, and Ultrasound‐Promoted Preparations -- 12.1 Introduction -- 12.1.1 Background on Preparative Techniques in Chemistry -- 12.1.2 Overview of Thermal, Microwave‐Assisted, and Ultrasound‐Promoted Preparations -- 12.1.3 Significance of Comparative Studies in Enhancing Synthetic Methodologies. , 12.1.3.1 Optimization of Conditions -- 12.1.3.2 Efficiency Improvement -- 12.1.3.3 Methodological Advances -- 12.1.3.4 Sustainability and Green Chemistry -- 12.2 Fundamentals of Thermal, Microwave‐Assisted, and Ultrasound‐Assisted Reactions -- 12.2.1 Explanation of Thermal Reactions and Their Advantages and Limitations -- 12.2.2 Introduction to Microwave‐Assisted Reactions and How They Differ from Traditional Method -- 12.2.3 Understanding the Principles and Mechanisms of Ultrasound‐Promoted Reactions -- 12.3 Case Studies in Organic Synthesis -- 12.3.1 Examining Examples of Organic Reactions Performed Under Thermal Conditions -- 12.3.1.1 Esterification Reaction Under Thermal Conditions -- 12.3.1.2 Dehydration of Alcohols -- 12.3.1.3 Oxidation of Aldehydes to Carboxylic Acids Using Water -- 12.3.2 Case Studies Showcasing the Application of Microwave‐Assisted Reactions -- 12.3.2.1 Microwave‐Assisted C C Bond Formation -- 12.3.2.2 Microwave‐Assisted Cyclization -- 12.3.2.3 Microwave‐Assisted Dehydrogenation Reactions -- 12.3.2.4 Microwave‐Assisted Organic Synthesis -- 12.3.3 Highlighting Successful Instances of Ultrasound‐Promoted Organic Synthesis -- 12.3.3.1 Ultrasound‐Promoted in Organic Synthesis -- 12.3.3.2 Ultrasound‐Promoted Oxidations -- 12.3.3.3 Ultrasound‐Promoted Esterification -- 12.3.3.4 Ultrasound‐Promoted Cyclization -- 12.4 Scope and Limitations -- 12.4.1 Discussing the Applicability of Each Method to Different Reaction Types -- 12.4.2 Identifying the Limitations and Challenges Faced by Each Technique -- 12.4.3 Opportunities for Combining Approaches to Overcome Specific Limitations -- 12.5 Future Directions and Emerging Trends -- 12.5.1 Overview of Recent Advancements and Ongoing Research in Thermal, Microwave, and Ultrasound‐Assisted Preparations -- 12.5.1.1 Food Processing Technologies. , 12.5.1.2 Chemical Routes to Materials: Thermal Oxidation of Graphite for Graphene Preparation.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Electronic books.
    Description / Table of Contents: Beginning with a look at the fundamentals of corrosion inhibition this book discusses various types of chemical that have potential as greener corrosion inhibitors and their industrial applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (285 pages)
    Edition: 1st ed.
    ISBN: 9781839167461
    Series Statement: ISSN Series
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    La Vergne :RSC,
    Keywords: Electronic books.
    Description / Table of Contents: This book provides readers with an overview of the properties and applications of nanomaterials and nanocomposites as corrosion inhibitors.
    Type of Medium: Online Resource
    Pages: 1 online resource (315 pages)
    Edition: 1st ed.
    ISBN: 9781839166259
    Series Statement: ISSN Series
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (481 pages)
    Edition: 1st ed.
    ISBN: 9780323959476
    DDC: 541.39
    Language: English
    Note: Front Cover -- Handbook of Organic Name Reactions -- Copyright Page -- Contents -- Foreword -- Preface -- 1 Organic reaction mechanism -- 1.1 Basics of organic chemistry -- 1.1.1 Inductive Effect -- 1.1.2 Electromeric Effect -- 1.1.3 Mesomeric effect/Resonating effect /Conjugation effect -- 1.1.4 Resonance -- 1.1.5 Hyperconjugation or no-bond resonance -- 1.2 Reaction intermediates: carbocation, carbanion, free radical, carbene, nitrene, and benzyne -- 1.2.1 Carbocation -- 1.2.2 Carbanion -- 1.2.3 Carbon-free radical -- 1.2.4 Carbene -- 1.2.5 Nitrene -- 1.2.6 Benzyne/aryne -- 1.3 Nucleophilic addition to carbon-heteroatoms multiple bonds -- 1.4 Electrophilic addition to carbon-carbon multiple bonds -- 1.4.1 Addition of bromine to alkenes -- 1.4.2 Regioselectivity of electrophilic addition to unsymmetrical alkenes -- 1.4.3 Formation of epoxide from alkene -- 1.4.4 Reaction of NBS to alkene -- 1.4.5 Iodo-and Bromo-lactonization -- 1.4.6 Addition of water molecule to alkene and alkynes -- 1.4.7 Dihydroxylation of alkenes -- 1.4.8 Ozonolysis -- 1.4.9 Hydroboration -- 1.5 Nucleophilic aliphatic substitution and neighboring group participation -- 1.6 Unimolecular nucleophilic substitution (SN1)reaction -- 1.7 Bimolecular nucleophilic substitution (SN2)reaction -- 1.8 Neighbouring group participation (NGP) -- 1.9 Substitution nucleophilic internal (SNi) Mechanism -- 1.10 Nucleophilic aromatic substitution -- 1.10.1 Addition-elimination mechanism (An activatedcomplex mechanism) -- 1.10.2 Elimination-addition mechanism (Benzyne mechanism) -- 1.11 Electrophilic aliphatic, alkenyl, and alkynyl substitution reaction -- 1.11.1 Unimolecular electrophilic aliphatic substitution (SE1) reaction -- 1.11.2 Bimolecular aliphatic electrophilic substitution reaction (SE1 and SEi) -- 1.11.3 Electrophilic substitution reaction at the allylic group. , 1.12 Electrophilic aromatic substitution reaction -- 1.13 Elimination reaction -- 1.13.1 Unimolecular elimination (E1) reaction -- 1.13.2 Bimolecular elimination E2 reaction -- 1.13.3 Unimolecular conjugated base (E1cB) Elimination reaction -- References -- 2 Reactions of aldehydes and ketones -- 2.1 Aldol condensation reaction -- 2.1.1 Cross-aldol condensation reaction -- 2.1.1.1 Reactivity of carbonyl compounds with nucleophilic agents -- 2.1.2 Henry nitroaldol condensation -- 2.1.3 Intramolecular aldol condensation -- 2.1.4 Barbas-list asymmetric aldol reaction -- 2.1.5 Mukaiyama aldol reaction -- 2.2 Baeyer-Villiger oxidation -- 2.3 Bamford-Stevens reaction -- 2.3.1 Selectivity in Bamford-Stevens reaction -- 2.4 Barton decarboxylation reaction -- 2.5 Barbier reaction -- 2.6 Barbier in situ Grignard reaction -- 2.7 Baer-Fischer amino sugar synthesis -- 2.8 Baylis-Hillman reaction -- 2.8.1 Intramolecular Baylis-Hillman reaction -- 2.9 Benzoin condensation -- 2.10 Bischler-Napieralski reaction -- 2.11 Bouveault-Blanc reduction reaction -- 2.12 Brown antialdol via B-enolate -- 2.13 Cannizzaro reaction -- 2.14 Claisen ester condensation -- 2.15 Clemmensen reduction reaction -- 2.16 Ciamician C=O photocoupling -- 2.17 Crimmins-Heathcock chiral anti-(syn) aldols -- 2.18 Cross-Cannizzaro reaction -- 2.19 Dakin reaction -- 2.20 Darzens reaction -- 2.21 De Mayo C=C photocycloaddition -- 2.22 Dieckmann condensation/cyclization reaction -- 2.23 Fujiwara arylation carboxylation -- 2.24 Gattermann aldehyde synthesis -- 2.25 Gattermann-Koch reaction -- 2.26 Haller-Bauer reaction -- 2.27 Haloform reaction -- 2.28 Hell-Volhard-Zelinsky reaction -- 2.29 Hunsdiecker reaction -- 2.30 Hollemann pinacol synthesis -- 2.31 Julia-Colonna asymmetric epoxidation -- 2.32 Knoevenagel reaction -- 2.33 Kiliani-Fischer sugar homologation -- 2.34 Mannich reaction. , 2.35 Meerwein-Ponndorf-Verley reduction reaction -- 2.35.1 Applications of the Meerwein-Ponndorf-Verley reduction reaction -- 2.36 Michael addition -- 2.37 Norrish type-I reaction -- 2.38 Norrish type-II reaction -- 2.39 Paterno-Buchi reaction -- 2.40 Perkin reaction -- 2.41 Peterson olefination -- 2.42 Reformatsky reaction -- 2.43 Riley selenium dioxide oxidation -- 2.44 Ruff-Fenton aldose degradation -- 2.45 Robinson annulation reaction -- 2.46 Rosenmund reaction -- 2.47 Shapiro reaction -- 2.47.1 Selectivity in Shapiro reaction -- 2.48 Stobbe condensation reaction -- 2.49 Stork enamine alkylation -- 2.50 Tebbe reaction -- 2.51 Tishchenko reaction -- 2.52 Tollens reaction -- 2.53 Wittig reaction -- 2.53.1 Methods for the formation of phosphonium ylide -- 2.53.2 Stereochemistry of Wittig reaction -- 2.54 Wolff-Kishner reduction -- References -- Further reading -- 3 Reaction of alcohols -- 3.1 Barton-McCombie deoxygenation -- 3.2 Baeyer-Villiger aromatic tritylation -- 3.3 Corey-Winter olefin synthesis -- 3.4 Corey-Chan synthesis -- 3.5 Gattermann synthesis reaction -- 3.6 Grieco olefination of alcohols -- 3.7 Houben-Hoesch reaction -- 3.8 Kolbe-Schmitt reaction -- 3.9 Mitsunobu reaction -- 3.9.1 Stereochemistry of Mitsunobu reaction -- 3.10 Moffatt oxidation -- 3.11 Mukaiyama-Ueno oxidation -- 3.12 Reimer-Tiemann reaction -- 3.13 Ritter reaction -- 3.14 Swern oxidation reaction -- 3.15 Sharpless asymmetric epoxidation -- 3.16 Sharpless asymmetric dihydroxylation -- 3.17 Simmons-Smith cyclopropanation -- 3.17.1 Stereochemistry of Simmons-Smith reaction -- 3.17.2 Selectivity of Simmons-Smith reaction -- 3.17.3 Reactivity of reactants for Simmons-Smith reaction -- 3.17.4 Directed Simmons-Smith reaction -- References -- 4 Reactions of heterocyclic compounds -- 4.1 Algar-Flynn-Oyamada reaction. , 4.1.1 Formation of other products [a side reaction (by-product)] -- 4.2 Bischler-Mohlau indole synthesis -- 4.3 Camps quinoline synthesis -- 4.4 Chichibabin reaction -- 4.5 Clauson-Kaas pyrrole synthesis -- 4.6 Combes quinoline synthesis -- 4.6.1 Electrocyclic mechanism -- 4.7 Dimroth triazole synthesis -- 4.8 Finnegan tetrazole synthesis -- 4.9 Fischer indole synthesis -- 4.10 Hantzsch pyrrole synthesis -- 4.11 Hantzsch thiazole synthesis -- 4.12 Knorr pyrrole synthesis -- 4.13 MacDonald porphyrin synthesis -- 4.14 Madelung indole synthesis -- 4.15 Pfitzinger quinoline synthesis -- 4.16 Pomeranz-Fritsch-Schlitter isoquinoline synthesis -- 4.17 Reissert indole synthesis -- 4.18 Skraup synthesis -- References -- 5 Coupling reactions -- 5.1 Buchwald-Hartwig coupling -- 5.2 Fukuyama thioester coupling -- 5.2.1 Catalytic cycle of Fukuyama thioester coupling reaction -- 5.3 Furstner iron-catalyzed C=C coupling -- 5.4 Glaser-Sondheimer acetylene coupling -- 5.5 Hiyama coupling -- 5.5.1 Catalytic cycle of Hiyama coupling reaction -- 5.6 Heck coupling -- 5.6.1 Examples of Heck coupling reactions -- 5.6.2 Intramolecular Heck coupling reaction -- 5.6.3 Catalytic cycle of Heck coupling reactions -- 5.7 Knochel coupling -- 5.8 Kumada coupling -- 5.8.1 Reactivity of halogens for Kumada coupling reaction -- 5.8.2 Catalytic cycle of Kumada coupling reaction -- 5.9 McMurry coupling -- 5.10 Negishi coupling -- 5.10.1 Catalytic cycle of Negishi coupling reaction -- 5.11 Sonogashira coupling -- 5.11.1 Catalytic cycle of Sonogashira coupling reaction -- 5.12 Stille coupling -- 5.12.1 Catalytic cycle of Stille coupling -- 5.12.2 Catalytic cycle in the presence of CO -- 5.13 Suzuki coupling -- 5.13.1 Reactivity of substrate for Suzuki coupling reaction -- 5.13.2 Catalytic cycle of Suzuki coupling reactions -- 5.14 Castro-Stephens acetylene coupling -- References. , 6 Rearrangements, participation, and fragmentation reactions -- 6.1 Arndt-Eistert homologation -- 6.2 Beckmann rearrangement -- 6.2.1 Stereochemistry of Beckmann rearrangement -- 6.2.2 Beckmann fragmentation -- 6.3 Benzidine rearrangement -- 6.4 Benzil-benzilic acid rearrangement -- 6.4.1 Rate of reaction -- 6.5 Brook rearrangement -- 6.5.1 Characteristics -- 6.6 Sigmatropic rearrangements -- 6.6.1 Aza-Cope rearrangements -- 6.6.2 Claisen rearrangement -- 6.6.2.1 Conditions for Claisen rearrangement -- 6.6.3 Cope rearrangement -- 6.6.3.1 Condition for Cope rearrangement - -- 6.6.4 Intramolecular aldol condensation -- 6.6.5 Ireland-Claisen rearrangement -- 6.6.6 Oxy-Cope rearrangements -- 6.7 Carroll allyl β-ketoester rearrangement -- 6.8 Chan acyloxyacetic ester rearrangement -- 6.9 Curtius rearrangement -- 6.10 Demjanov diazonium rearrangement -- 6.11 Eschenmoser fragmentation reaction -- 6.12 Favorskii rearrangement -- 6.12.1 Favorskii rearrangement in cyclic ketones -- 6.13 Fries rearrangement -- 6.13.1 Reason for the o-isomer to be a major product -- 6.13.2 Conditions for Fries rearrangement -- 6.14 Grob fragmentation -- 6.15 Hofmann rearrangement -- 6.16 Lossen rearrangement -- 6.17 Nazarov cyclization -- 6.18 Neber rearrangement -- 6.19 Photo-Fries rearrangement -- 6.20 Pschorr cyclization -- 6.21 Payne rearrangement -- 6.22 Semipinacol rearrangement -- 6.23 Schmidt rearrangement -- 6.24 Smiles rearrangement -- 6.25 Sommelet-Hauser rearrangement -- 6.26 Tiffeneau-Demjanov ring expansion -- 6.27 von Richter rearrangement -- 6.28 Wagner-Meerwein rearrangement -- 6.29 Wittig rearrangement -- 6.30 Wolff rearrangement -- 6.30.1 Nature of 1,2 migration -- 6.31 Zimmerman Di-π methane rearrangement -- 6.31.1 Stereochemistry of Di-π methane rearrangement -- 6.31.2 Selectivity in the breaking of cyclopropane ring -- References. , 7 Reaction of amines, carboxylic acid, and derivatives.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (626 pages)
    Edition: 1st ed.
    ISBN: 9781394203925
    DDC: 547.632
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Editor Biography -- Part I Overview of Polyphenols -- 1 Fundamentals of Polyphenols: Nomenclature, Classification and Properties -- 1.1 Introduction -- 1.2 A Short History of Polyphenols -- 1.3 Fundamental of Polyphenols -- 1.4 Nomenclature of Polyphenols -- 1.5 Classification of Polyphenols -- 1.5.1 Flavonoids -- 1.5.2 Nonflavonoids -- 1.6 Extraction Methods of Polyphenols -- 1.6.1 Ultrasonic-Assisted Extraction of Polyphenols -- 1.6.2 Microwave-Assisted Extraction of Polyphenols -- 1.6.3 Supercritical Fluid Extraction of Polyphenols -- 1.6.4 SPE of Polyphenols -- 1.6.5 Solvent Extraction of Polyphenols -- 1.7 Solubility of Polyphenols -- 1.7.1 Chemical Modification -- 1.7.2 Solubilizing Agents -- 1.7.3 Physical Treatment -- 1.7.4 Solubility of Polyphenols by pH Adjustment -- 1.7.5 Co-solvents -- 1.8 Flavor and Color of Polyphenols -- 1.8.1 Flavor -- 1.8.2 Color of Polyphenols -- 1.9 Health-Promoting Properties of Polyphenols -- 1.9.1 Antioxidative Properties -- 1.9.2 Anti-inflammatory Properties -- 1.9.3 Anti-cancer Properties -- 1.9.4 Cardiovascular Health -- 1.9.5 Neuroprotective Properties -- 1.9.6 Anti-diabetic Activity -- 1.9.7 Anti-microbial Properties -- 1.10 Skin Benefits of Polyphenols -- 1.11 Conclusions -- References -- 2 Chemistry of Polyphenols: Synthesis, Characterization, and Structure (Electronic and Molecular) and Reactivity -- 2.1 Introduction -- 2.2 Synthesis and Characterization -- 2.3 Polyphenolics Without Intervening Atoms -- 2.3.1 Open Chain -- 2.3.2 Cyclic -- 2.4 Polyphenols with Intervening Carbon Atoms -- 2.4.1 Phenol-Aldehyde Oligomers -- 2.5 Polyphenols with Intervening Heteroatoms -- 2.5.1 Open Chain -- 2.5.1.1 Poly-Phenylene-Ether -- 2.5.1.2 Oxacalixarenes -- 2.6 Characterization -- 2.7 Chemical Structure and Reactivity. , 2.7.1 Functional Groups and Classification -- 2.7.2 Chemical Arrangement of Polyphenols -- 2.7.3 Presence of Multiple Rings -- 2.8 Conclusion -- References -- 3 Plant-Derived Polyphenols: Extraction, Purification, and Characterization -- 3.1 Introduction -- 3.2 Extraction of Polyphenols -- 3.2.1 Ultrasound-Assisted Extraction (UAE) -- 3.2.2 Supercritical Fluid Extraction (SFE) -- 3.2.3 Microwave-Assisted Extraction -- 3.2.4 Pressurized Liquid Extraction (PLE) -- 3.2.5 Pressurized Hot Water Extraction (PHWE) -- 3.3 Purification of Polyphenols -- 3.4 Characterization of Polyphenols -- 3.5 Conclusion and Outlook -- List of Abbreviations -- References -- 4 Fermentation and Degradation of Polyphenols -- 4.1 Introduction -- 4.2 Plant-Based Fermented Food Products with Lactic Acid Bacteria -- 4.3 Microbial Fermentation of Food Macronutrients -- 4.4 Metabolism of Food Phenolics by Lactic Acid Bacteria -- 4.4.1 Tannase -- 4.4.2 Phenolic Acid Decarboxylase (PAD) -- 4.4.3 Other Lactic Acid Bacteria Species -- 4.5 Polyphenols Differentially Modulate Bacterial Growth -- 4.6 Functional Food Products Based on Polyphenolic fermentation by Probiotics -- 4.7 Fermentation of Whole Grain Foods -- 4.8 Degradation of Polyphenol -- 4.8.1 Aerobic Degradation -- 4.8.2 Thermal Degradation -- 4.9 Conclusions and Future Perspectives -- Acknowledgments -- List of Abbreviations -- References -- Part II Industrial Applications of Polyphenols -- 5 Polyphenols for Wastewater and Industrial Influents' Treatment -- 5.1 Introduction -- 5.2 History of Natural Polyphenols -- 5.3 Types of Natural Polyphenols -- 5.3.1 Flavonoids -- 5.3.2 Phenolic Acids -- 5.3.3 Tannins -- 5.3.4 Stilbenes -- 5.3.5 Lignans -- 5.4 Polyphenols in Wastewater Remediation -- 5.5 Structural and Functional Features of Polyphenols -- 5.5.1 Natural Polyphenols' Structural Features. , 5.5.2 Natural Polyphenols Functional Features -- 5.6 Overview of Polyphenol-Based Materials -- 5.6.1 Nanofibers -- 5.6.2 Synthetic Membranes -- 5.6.3 Phenolic Nanoparticles -- 5.6.4 Adsorbent -- 5.6.5 Phenolic Hydrogels -- 5.7 Applications of Natural Polyphenol-Based Material in Water Remediation -- 5.7.1 Membrane Filtration -- 5.7.2 Interfacial Solar Distillation -- 5.7.3 Adsorption -- 5.7.4 Advanced Oxidation Process -- 5.7.5 Disinfection and Purification of Water -- 5.8 Conclusions, Challenges, and Prospects -- References -- 6 Polyphenols for Anticorrosion Application -- 6.1 Introduction -- 6.2 Anticorrosive Properties of Polyphenols: Literature Survey -- 6.3 Conclusion -- References -- 7 Polyphenols for Dyes Application -- 7.1 Introduction -- 7.2 Natural Dyes and the Need for Sustainable Alternatives -- 7.2.1 Synthetic Dyes vs. Natural Dyes -- 7.2.2 Growing Demand for Sustainable Dyeing Solutions -- 7.2.3 Role of Polyphenols as Natural Dyes -- 7.3 Chemical Structure of Polyphenols and their Dyeing Properties -- 7.3.1 Overview of Polyphenols -- 7.3.2 Aromatic Rings and Hydroxyl Groups in Polyphenols -- 7.3.3 Contribution of Chemical Structure to Dyeing Properties -- 7.4 Extraction Methods for Polyphenols from Plant Sources -- 7.4.1 Plant Sources of Polyphenols -- 7.4.2 Extraction Techniques: Solvent Extraction -- 7.4.3 Extraction Techniques: Solid-Phase Extraction -- 7.4.4 Extraction Techniques: Ultrasound-Assisted Extraction -- 7.4.5 Advantages and Limitations of Different Extraction Methods -- 7.5 Dyeing Mechanisms of Polyphenols -- 7.5.1 Adsorption as a Dyeing Mechanism -- 7.5.2 Covalent Bonding in Dyeing with Polyphenols -- 7.5.3 Metal Complexation in Polyphenol Dyeing -- 7.6 Applications of Polyphenols as Natural Dyes -- 7.6.1 Polyphenols in Fabric Dyeing -- 7.6.2 Polyphenols in Leather Tanning -- 7.6.3 Polyphenols in Hair Colorants. , 7.6.4 Polyphenols in Natural Food Coloring -- 7.7 Challenges and Future Prospects -- 7.7.1 Challenges in Polyphenol Dye Applications -- 7.7.2 Future Research Directions and Opportunities -- 7.7.3 Nanotechnology for Enhancing Dyeing Efficiency and Stability -- 7.8 Conclusions, Challenges, and Future Perspectives -- References -- 8 Polyphenols for Packaging Application -- 8.1 Introduction -- 8.2 Active Packaging: Coating and Thin Films -- 8.3 Phenolic Compounds -- 8.3.1 Antioxidant and Antimicrobial Activities -- 8.3.2 Polymeric Matrices for Polyphenols-Based Food Packaging -- 8.4 Classifications and Applications of Polyphenolic Compounds -- 8.4.1 Flavonoids -- 8.4.1.1 Flavanones -- 8.4.1.2 Flavonols -- 8.4.1.3 Flavanols -- 8.4.1.4 Anthocyanins -- 8.4.1.5 Flavones -- 8.4.2 Non-flavonoids -- 8.4.2.1 Tannins -- 8.4.2.2 Phenolic Acids -- 8.4.2.3 Curcuminoids -- 8.4.2.4 Coumarins -- 8.4.2.5 Lignans -- 8.4.2.6 Stilbenes -- 8.4.2.7 Lignins -- 8.5 Action Mechanism -- 8.6 Limits and Future Predictions -- 8.7 Conclusions -- References -- 9 Polyphenols for Textile-Based Application -- 9.1 Introduction -- 9.2 Polyphenols in Textile-Based Applications -- 9.2.1 Flavonoids -- 9.2.2 Phenolic Acids -- 9.2.3 Stilbenes -- 9.2.4 Lignans -- 9.2.5 Tannins -- 9.3 Specific Functional Finishing Using Polyphenols -- 9.3.1 UV Protection -- 9.3.2 Remediation of Organic Synthetic Dyes -- 9.3.3 Interfacial Assembly of Metal-Phenolic Networks for Hair Dyeing -- 9.3.4 Anti-Odor Finishing -- 9.4 Future Outlook -- 9.5 Conclusion -- Acknowledgement -- References -- 10 Polyphenols for Sensing/Biosensing Application -- 10.1 Introduction -- 10.2 Electrochemical Biosensors of Phenolic Compounds Based on Polyphenol Oxidases -- 10.2.1 Electrochemical Biosensors of Phenolic Compounds Based on Tyrosinase (Tyr) -- 10.2.2 Electrochemical Biosensors of Phenolic Compounds Based on Laccase (Lac). , 10.2.3 Other Biosensors for Phenolic Compounds Quantification -- 10.3 Polyphenols for Metal Ions Sensing Applications -- 10.4 Polyphenols and Human Health -- 10.5 Conclusions and Future Perspectives -- References -- 11 11Polyphenol-based Hydrogels and Nanocomplexes: Fundamental, Properties, and Industrial Applications -- 11.1 Introduction -- 11.2 Polyphenols Grafted on Molecules Able to Undergo Gelation -- 11.2.1 Polyphenols Blended with Molecules Able to Undergo Gelation -- 11.2.2 Controlled Protein-Polyphenol Coacervates Based on LBL Assembly -- 11.3 Conclusions and Perspectives -- References -- 12 Polyphenol-based Materials as Sensors: Recent Trends in Chemo- and Bio-sensing -- 12.1 Introduction -- 12.2 Polyphenol -- 12.3 Polyphenol-based Nanomaterials and Their Derivatives -- 12.3.1 Metal-polyphenol Coordination Polymers -- 12.3.2 Metal-polyphenol Coordination Polymers Derived Carbon Nanomaterials -- 12.3.3 Metal-polyphenol Coordination Polymers Derived Metal Oxide Nanomaterials -- 12.4 Sensing Applications -- 12.4.1 Ion Sensing -- 12.4.1.1 pH Sensing -- 12.4.1.2 Metal Ions Sensing -- 12.4.2 Molecule Sensing -- 12.4.2.1 Formaldehyde Sensing -- 12.4.2.2 Hydrogen Peroxide Sensing -- 12.4.2.3 Ethanol Sensing -- 12.4.2.4 Melamine Sensing -- 12.4.2.5 Monofluoroacetic Acid Sensing -- 12.4.2.6 Clenbuterol Sensing -- 12.4.2.7 Trimethylamine and Triethylamine Sensing -- 12.4.2.8 Glutathione Sensing -- 12.4.2.9 Acetaminophen Sensing -- 12.4.2.10 Nucleic Acid Sensing -- 12.4.2.11 Protein Sensing -- 12.5 Summary and Outlook -- Acknowledgments -- References -- Part III Polyphenols for Life Science Applications -- 13 Polyphenols in Control of COVID-19 -- 13.1 Introduction -- 13.1.1 Overview of COVID-19 and Polyphenols -- 13.1.2 Polyphenols: Definition and General Properties -- 13.1.3 Natural sources and extraction -- 13.1.4 General Health Benefits. , 13.2 Antiviral Properties of Polyphenols.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...