GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Plant Physiology and Plant Molecular Biology 42 (1991), S. 373-390 
    ISSN: 1040-2519
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Microbiology 37 (1983), S. 399-424 
    ISSN: 0066-4227
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Phytopathology 18 (1980), S. 259-288 
    ISSN: 0066-4286
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 11 (1988), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Root nodule organogenesis is described. Plant regulated aspects of nodulation and N2 fixation are reviewed and discussed. Since the effective N2 fixing symbiosis requires the interaction of the host plant and bacterium in an appropriate environment (the rhizosphere and the root nodule) it is essential that research aimed at improving N2 fixation involve a knowledge and understanding of the plant genes that affect nodule development, growth, and function. Current knowledge of host plant genes involved in N2 fixation is summarized. Various experimental approaches to the study of the host plant's contribution to nodulation are noted. The functions of nodule specific proteins (nodulins) in symbiosis are delineated. Future areas of research are suggested.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Full length cDNAs encoding alcohol dehydrogenase (ADH), fructose-1,6-biphosphate aldolase (ALD), nodule-enhanced malate dehydrogenase (neMDH), phosphoenolpyruvate carboxylase (PEPC), and nodule-enhanced sucrose synthase (neSS) were isolated from a pea (Pisum sativum L.) root nodule cDNA library and characterized. Transcript abundance and cellular expression patterns for each gene were examined at different stages of nodule development. All the genes were expressed prior to the induction of nitrogenase suggesting a developmental signal as the initial trigger for expression. RNA tissue blots demonstrated that all the genes except ALD exhibit enhanced expression in effective nodules. In situ hybridization studies showed contrasting patterns of gene expression within various nodule zones. The highest expression of ADH was observed in interzone. ALD was expressed predominantly in nodule meristem, invasion zone and interzone. The neSS transcripts were found rather uniformly throughout the nodule. Expression of neMDH and PEPC was also detected throughout the nodule, but the highest levels were associated with interzone and N2-fixing zone.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: White lupin (Lupinus albus L.) develops proteoid roots when grown in phosphorus (P)-deficient conditions. These short, lateral, densely clustered roots are adapted to increase P availability. Previous studies from our laboratory have shown proteoid roots have higher rates of non-photosynthetic carbon fixation than normal roots and altered metabolism to support organic acid exudation, which serves to solubilize P in the rhizosphere. The present work indicates that proteoid roots possess additional adaptations for increasing P availability and possibly for conserving P in the plant. Roots from P-deficient (–P) plants had significantly greater acid phosphatase activity in both root extracts and root exudates than comparable samples from P-sufficient (+P) plants beginning 10 d after emergence. The increase in activity in –P plants was most pronounced in the proteoid regions. In contrast, no induction of phytase activity was found in –P plants compared to +P plants. The number of proteoid roots present was not affected by the source of phosphorus supplied, whether organic or inorganic forms. Adding molybdate to the roots increased the number of proteoid roots in plants supplied with organic P, but not inorganic P. Increased acid phosphatase activity was detected in root exudates in the presence of organic P sources. Native-polyacrylamide gel electrophoresis demonstrated that under P-deficient conditions, a unique isoform of acid phosphatase was induced between 10 and 12 d after emergence. This isoform was found not only within the root, but it comprised the major form exuded from proteoid roots of –P plants. The fact that exudation of proteoid-root-specific acid phosphatase coincides with proteoid root development and increased exudation of organic acids indicates that white lupin has several coordinated adaptive strategies to P-deficient conditions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 19 (1996), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Phosphoenolpyruvate carboxylase (PEPC; EC 4-1-1-31) plays a paramount role in providing carbon for synthesis of malate and aspartate in alfalfa (Medicago sativa L.) root nodules. PEPC protein and activity levels are highly enhanced in N2-fixing alfalfa nodules. To ascertain the relationship between the cellular location of PEPC and root nodule metabolism, enzyme localization was evaluated by immunogold cytochemistry using alfalfa nodule PEPC antibodies. Gold labelling patterns in effective nodules showed that PEPC is a cytosolic enzyme and is distributed relatively equally in infected and uninfected cells of the nodule symbiotic zone. A high amount of labelling was also observed in pericycle cells of the nodule vascular system. Labelling was also detected within inner cortical cells, but the density was reduced by 60%. When Lotus corniculatus was transformed with a chimeric gene consisting of the 5′-upstream region of the PEPC gene fused to β-glucuronidase (GUS), GUS staining in nodules was consistent with immunogold localization patterns. The occurrence of PEPC in both infected and uninfected cells of the symbiotic zone of effective nodules coupled to the reduced amounts in ineffective nodules suggests a direct role for this enzyme in supporting N2-fixation. PEPC localization in the uninfected, interstitial cells of the symbiotic zone indicates that these cells may also have a role in nodule carbon metabolism. Moreover, the association of PEPC with the nodule vascular system implies a role for the enzyme in the transport of assimilates to and from the shoot.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: Glutamate oxalate transaminase ; Isozymes ; Nitrogen fixation ; Medicago sativa L. ; Rhizobium meliloti
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The enzyme aspartate aminotransferase (AAT) plays a key role in the assimilation of fixed-N in alfalfa (Medicago sativa L.) root nodules. AAT activity in alfalfa nodules is due to the activity of two dimeric isozymes, AAT-1 and AAT-2, that are products of two distinct genes. Three forms of AAT-2 (AAT-2a, -2b, and-2c) have been identified. It was hypothesized that two alleles occur at the AAT-2 locus, giving rise to the three AAT-2 enzymes. In a prior study bidirectional selection for root nodule AAT and asparagine synthetase (AS) activities on a nodule fresh weight basis in two diverse alfalfa germ plasms resulted in high nodule enzyme activity subpopulations with about 20% more nodule AAT activity than low enzyme activity subpopulations. The objectives of the study presented here were to determine the inheritance of nodule AAT-2 production and to evaluate the effect of bidirectional selection for AAT and AS on AAT-2 allelic frequencies, the relative contributions of AAT-1 and AAT-2 to total nodule activity, nodule enzyme concentration, and correlated traits. Two alleles at the AAT-2 locus were verified by evaluating segregation of isozyme phenotypes among F1 and S1 progeny of crosses or selfs. Characterization of subpopulations for responses associated with selection was conducted using immunoprecipitation of in vitro nodule AAT activity, quantification of AAT enzyme protein by ELISA, and AAT activity staining of native isozymes on PAGE. Results indicate that selection for total AAT activity specifically altered the expression of the nodule AAT-2 isozyme. AAT-2 activity was significantly greater in high compared to low activity subpopulations, and high AAT subpopulations from both germ plasms had about 18% more AAT-2 enzyme (on a nodule fresh weight basis). No significant or consistent changes in AAT-2 genotypic frequencies in subpopulations were caused by selection for AAT activity. Since changes in AAT activity were not associated with changes in AAT-2 genotype, selection must have affected a change(s) at another locus (or loci), which indirectly effects the expression of nodule AAT.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5036
    Keywords: Acetylene reduction ; Disease resistance ; Host-Rhizobium strain interaction ; Nitrate reductase ; Nodule enzymes ; Nodule mass ; 15N evaluation ; Plant vigor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The goal of breeding alfalfa for increased N2 fixation potential is addressed. A chronological progression of breeding, physiological, microbiological, and plant pathological research is described. Studies describing the interrelationships among plant morphological, plant physiological, andRhizobium effectiveness traits are summarized. It was concluded that N2 fixation in alfalfa is affected by coordinated responses among many physiological and biochemical traits. The simultaneous improvement of many factors in the symbiosis requires a comprehensive multiple-step breeding program. The current program includes selection in the glasshouse for seedling vigor,Rhizobium preference, shoot growth, nodule mass, root growth, nitrogenase (as measured by acetylene reduction), and nodule enzyme activity. The inclusion of additional selection traits is anticipated. Field evaluations of N2 fixation potential of alfalfa populations are made with15N isotope dilution techniques. Plant germplasm sources used in the breeding program include several heterogeneous populations which have good combining ability and pest resistance when they are intercrossed. Significant progress has been made in achieving the goal of breeding alfalfa for improved N2 fixation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-08
    Description: Fast neutron radiation has been used as a mutagen to develop extensive mutant collections. However, the genome-wide structural consequences of fast neutron radiation are not well understood. Here, we examine the genome-wide structural variants observed among 264 soybean [ Glycine max (L.) Merrill] plants sampled from a large fast neutron-mutagenized population. While deletion rates were similar to previous reports, surprisingly high rates of segmental duplication were also found throughout the genome. Duplication coverage extended across entire chromosomes and often prevailed at chromosome ends. High-throughput resequencing analysis of selected mutants resolved specific chromosomal events, including the rearrangement junctions for a large deletion, a tandem duplication, and a translocation. Genetic mapping associated a large deletion on chromosome 10 with a quantitative change in seed composition for one mutant. A tandem duplication event, located on chromosome 17 in a second mutant, was found to cosegregate with a short petiole mutant phenotype, and thus may serve as an example of a morphological change attributable to a DNA copy number gain. Overall, this study provides insight into the resilience of the soybean genome, the patterns of structural variation resulting from fast neutron mutagenesis, and the utility of fast neutron-irradiated mutants as a source of novel genetic losses and gains.
    Print ISSN: 0016-6731
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...