GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Chromatographic analysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (591 pages)
    Edition: 2nd ed.
    ISBN: 9783527649303
    Language: English
    Note: Intro -- Related Titles -- Title Page -- Copyright -- Preface -- About the Editors -- List of Contributors -- List of Abbreviations -- Notation -- Symbols -- Greek Symbols -- Subscripts -- Definition of Dimensionless Parameters -- Chapter 1: Introduction -- 1.1 Development of Chromatography -- 1.2 Focus of the Book -- 1.3 Recommendation to Read this Book -- References -- Chapter 2: Fundamentals and General Terminology -- 2.1 Principles of Adsorption Chromatography -- 2.2 Basic Effects and Chromatographic Definitions -- 2.3 Fluid Dynamics -- 2.4 Mass Transfer Phenomena -- 2.5 Equilibrium Thermodynamics -- 2.6 Thermodynamic Effects on Mass Separation -- References -- Chapter 3: Stationary Phases and Chromatographic Systems -- 3.1 Column Packings -- 3.2 Selection of Chromatographic Systems -- References -- Chapter 4: Chromatography Equipment: Engineering and Operation -- 4.1 Introduction -- 4.2 Engineering and Operational Challenges -- 4.3 Chromatography Columns Market -- 4.4 Chromatography Systems Market -- 4.5 Process Control -- 4.6 Packing Methods -- 4.7 Process Troubleshooting -- 4.8 Disposable Technology for Bioseparations -- References -- Chapter 5: Process Concepts -- 5.1 Discontinuous Processes -- 5.2 Continuous Processes -- 5.3 Choice of Process Concepts -- References -- Chapter 6: Modeling and Model Parameters -- 6.1 Introduction -- 6.2 Models for Single Chromatographic Columns -- 6.3 Modeling HPLC Plants -- 6.4 Calculation Methods -- 6.5 Parameter Determination -- 6.6 Experimental Validation of Column Models -- References -- Chapter 7: Model-Based Design, Optimization, and Control -- 7.1 Basic Principles and Definitions -- 7.2 Batch Chromatography -- 7.3 Recycling Chromatography -- 7.4 Conventional Isocratic SMB Chromatography -- 7.5 Isocratic SMB Chromatography under Variable Operating Conditions -- 7.6 Gradient SMB Chromatography. , 7.7 Multicolumn Systems for Bioseparations -- 7.8 Advanced Process Control -- References -- Appendix A: Data of Test Systems -- A.1 EMD53986 -- A.2 Tröger's Base -- A.3 Glucose and Fructose -- A.4 β-Phenethyl Acetate -- A.5 ß-Lactoglobulin A and B -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Drugs -- Analysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (488 pages)
    Edition: 1st ed.
    ISBN: 9783527605903
    DDC: 615.1901
    Language: English
    Note: Intro -- Preparative Chromatography -- Contents -- Preface -- List of Contributors -- Notation -- List of Abbreviations -- 1 Introduction -- 1.1 Liquid Chromatography - its History -- 1.2 Focus of the Book -- 1.3 How to Read this Book -- 2 Fundamentals and General Terminology -- 2.1 Principles of Adsorption Chromatography -- 2.1.1 Adsorption Process -- 2.1.2 Chromatographic Process -- 2.2 Basic Effects and Chromatographic Definitions -- 2.2.1 Chromatograms and their Parameters -- 2.2.2 Voidage and Porosity -- 2.2.3 Influence of Adsorption Isotherms on the Chromatogram -- 2.3 Fluid Dynamics -- 2.3.1 Extra Column Effects -- 2.3.2 Column Fluid Distribution -- 2.3.3 Packing Non-idealities -- 2.3.4 Sources for Non-ideal Fluid Distribution -- 2.4 Mass Transfer Phenomena -- 2.4.1 Principles of Mass Transfer -- 2.4.2 Efficiency of Chromatographic Separations -- 2.4.3 Resolution -- 2.5 Equilibrium Thermodynamics -- 2.5.1 Definition of Isotherms -- 2.5.2 Models of Isotherms -- 2.5.2.1 Single-component Isotherms -- 2.5.2.2 Multi-component Isotherms -- 2.5.2.3 Ideal Adsorbed Solution (IAS) Theory -- 2.6 Thermodynamic Effects on Mass Separation -- 2.6.1 Mass Load -- 2.6.2 Linear and Nonlinear Isotherms -- 2.6.3 Elution Modes -- 2.7 Practical Aspects of Parameter Determination -- 2.7.1 Linearized Chromatography -- 2.7.2 Nonlinear Chromatography -- 3 Columns, Packings and Stationary Phases -- 3.1 Column Design -- 3.1.1 Column Hardware and Dimensions -- 3.1.2 Columns with Particles (Particulate Column Beds) -- 3.1.3 Columns with a Continuous Bed (Monolithic Columns) -- 3.1.4 Column Pressure Drop -- 3.1.5 Frit Design -- 3.2 Column Packings -- 3.2.1 Survey of Packings and Stationary Phases -- 3.2.2 Generic, Designed and Tailored Adsorbents -- 3.2.2.1 Generic Adsorbents -- 3.2.2.2 Tailored Adsorbents -- 3.2.2.3 Designed Adsorbents -- 3.2.3 Reversed Phase Silicas. , 3.2.3.1 Silanisation of the Silica Surface Objectives -- 3.2.3.2 Reversed Phase Packings with Polymer Coatings (Types of Polymer Coatings) -- 3.2.3.3 Physico-chemical Properties of Reversed Phase Silicas -- 3.2.3.4 Chromatographic Characterization of Reversed Phase Silicas -- 3.2.4 Cross-linked Organic Polymers -- 3.2.4.1 General Aspects -- 3.2.4.2 Hydrophobic Polymer Stationary Phases -- 3.2.5 Chiral Stationary Phases -- 3.2.6 Properties of Packings and their Relevance to Chromatographic Performance -- 3.2.6.1 Chemical and Physical Bulk Properties -- 3.3 Column Packing Technology -- 3.3.1 Characterization of the Column Bed Structure -- 3.3.2 Assessment of Column Performance -- 3.4 Column Testing -- 3.4.1 Test Systems -- 3.4.2 Hydrodynamic Properties and Column Efficiency -- 3.4.3 Mass Loadability -- 3.4.4 Comparative Rating of Columns -- 3.5 Column Maintenance and Regeneration -- 3.5.1 Cleaning in Place (CIP) -- 3.5.2 Conditioning of Silica Surfaces -- 3.5.3 Sanitization in Place (SIP) -- 3.5.4 Column and Adsorbent Storage -- 3.6 Guidelines for Choosing Chromatographic Columns and Stationary Phases -- 4 Selection of Chromatographic Systems -- 4.1 Definition of the Task -- 4.2 Properties of Chromatographic Systems -- 4.2.1 Mobile Phases for Liquid Chromatography -- 4.2.1.1 Stability -- 4.2.1.2 Safety Concerns -- 4.2.1.3 Operating Conditions -- 4.2.2 Adsorbent and Phase System -- 4.2.2.1 Normal Phase System -- 4.2.2.2 Reversed Phase Chromatography -- 4.3 Criteria for Choice of Chromatographic Systems -- 4.3.1 Choice of Phase System Dependent on Solubility -- 4.3.1.1 Improving Loadability for Poor Solubilities -- 4.3.1.2 Dependency of Solubility on Sample Purity -- 4.3.1.3 Generic Gradients for Fast Separations -- 4.3.2 Criteria for Choice of NP Systems -- 4.3.2.1 Pilot Technique Thin-layer Chromatography -- 4.3.2.2 Retention in NP Systems. , 4.3.2.3 Solvent Strength in Liquid-Solid Chromatography -- 4.3.2.4 Selectivity in NP Systems -- 4.3.2.5 Mobile Phase Optimization by TLC Following the PRISMA Model -- 4.3.2.6 Strategy for an Industrial Preparative Chromatography Laboratory -- 4.3.3 Criteria for Choosing RP Systems -- 4.3.3.1 Retention and Selectivity in RP Systems -- 4.3.3.2 Gradient Elution for Small amounts of Product on RP Materials -- 4.3.3.3 Rigorous Optimization for Isocratic Runs -- 4.3.3.4 Rigorous Optimization for Gradient Runs -- 4.3.3.5 Practical Recommendations -- 4.3.4 Criteria for Choosing CSP Systems -- 4.3.4.1 Suitability of Preparative CSP -- 4.3.4.2 Development of Enantioselectivity -- 4.3.4.3 Optimization of Separation Conditions -- 4.3.4.4 Practical Recommendations -- 4.3.5 Conflicts During Optimization of Chromatographic Systems -- 5 Process Concepts -- 5.1 Design and Operation of Equipment -- 5.1.1 Solvent and Sample Delivery System -- 5.1.1.1 HPLC Pumps -- 5.1.1.2 Gradient Formation -- 5.1.1.3 Eluent Degassing -- 5.1.1.4 Eluent Reservoir -- 5.1.1.5 Sample Injection -- 5.1.2 Chromatographic Column -- 5.1.3 Detection and Separation System -- 5.1.3.1 Solvent-sensitive Detectors -- 5.1.3.2 Fraction Collection -- 5.2 Discontinuous Processes -- 5.2.1 Isocratic Operation -- 5.2.2 Flip-flop Chromatography -- 5.2.3 Closed-loop Recycling Chromatography -- 5.2.4 Steady State Recycling Chromatography -- 5.2.5 Gradient Chromatography -- 5.3 Continuous Processes -- 5.3.1 Column Switching Chromatography -- 5.3.2 Annular Chromatography -- 5.3.3 Multiport Switching Valve Chromatography (ISEP/CSEP) -- 5.3.4 Simulated Moving Bed (SMB) Chromatography -- 5.3.5 SMB Chromatography with Variable Conditions -- 5.3.5.1 VariCol -- 5.3.5.2 PowerFeed -- 5.3.5.3 Partial feed -- 5.3.5.4 ISMB -- 5.3.5.5 ModiCon -- 5.3.6 Gradient SMB Chromatography. , 5.3.6.1 Solvent-gradient SMB Chromatography -- 5.3.6.2 Supercritical Fluid SMB Chromatography -- 5.3.6.3 Temperature-gradient SMB Chromatography -- 5.4 Guidelines -- 5.4.1 Scale -- 5.4.2 Range of k' -- 5.4.3 Number of Fractions -- 5.4.4 Example 1: Lab Scale -- Two Fractions -- 5.4.5 Example 2: Lab Scale -- Three or More Fractions -- 5.4.6 Example 3: Production Scale -- Wide Range of k' -- 5.4.7 Example 4: Production Scale -- Two Main Fractions -- 5.4.8 Example 5: Production Scale -- Three Fractions -- 5.4.9 Example 6: Production Scale -- Multi-stage Process -- 6 Modeling and Determination of Model Parameters -- 6.1 Introduction -- 6.2 Models for Single Chromatographic Columns -- 6.2.1 Classes of Chromatographic Models -- 6.2.2 Derivation of the Mass Balance Equations -- 6.2.2.1 Mass Balance Equations -- 6.2.2.2 Convective Transport -- 6.2.2.3 Axial Dispersion -- 6.2.2.4 Intraparticle Diffusion -- 6.2.2.5 Mass Transfer -- 6.2.2.6 Adsorption Kinetics -- 6.2.2.7 Adsorption Equilibrium -- 6.2.3 Ideal Equilibrium Model -- 6.2.4 Models with One Band-broadening Effect -- 6.2.4.1 Equilibrium Dispersive Model -- 6.2.4.2 Transport Model -- 6.2.4.3 Reaction Model -- 6.2.5 Lumped Rate Models -- 6.2.5.1 Transport Dispersive Model -- 6.2.5.2 Reaction Dispersive Model -- 6.2.6 General Rate Models -- 6.2.7 Initial and Boundary Conditions of the Column -- 6.2.8 Stage Models -- 6.2.9 Assessment of Different Model Approaches -- 6.2.10 Dimensionless Model Equations -- 6.3 Modeling HPLC Plants -- 6.3.1 Experimental Set-up and Simulation Flowsheet -- 6.3.2 Modeling Extra Column Equipment -- 6.3.2.1 Injection System -- 6.3.2.2 Piping -- 6.3.2.3 Detector -- 6.4 Numerical methods -- 6.4.1 General Solution Procedure -- 6.4.2 Discretization -- 6.5 Parameter Determination -- 6.5.1 Parameter Classes for Chromatographic Separations -- 6.5.1.1 Design Parameters. , 6.5.1.2 Operating Parameters -- 6.5.1.3 Model Parameters -- 6.5.2 Determination of Model Parameters -- 6.5.3 Evaluation of Chromatograms -- 6.5.3.1 Moment Analysis and HETP Plot -- 6.5.3.2 Parameter Estimation -- 6.5.3.3 Peak Fitting Functions -- 6.5.4 Detector Calibration -- 6.5.5 Plant Parameters -- 6.5.6 Determination of Packing Parameters -- 6.5.6.1 Void Fraction and Porosity of the Packing -- 6.5.6.2 Axial Dispersion -- 6.5.6.3 Pressure Drop -- 6.5.7 Isotherms -- 6.5.7.1 Determination of Adsorption Isotherms -- 6.5.7.2 Determination of the Henry Coefficient -- 6.5.7.3 Static Methods -- 6.5.7.4 Dynamic Methods -- 6.5.7.5 Frontal Analysis -- 6.5.7.6 Analysis of Disperse Fronts (ECP/FACP) -- 6.5.7.7 Peak-maximum Method -- 6.5.7.8 Minor Disturbance/Perturbation Method -- 6.5.7.9 Curve Fitting of the Chromatogram -- 6.5.7.10 Calculation of Mixture Behavior from Single Component Data -- 6.5.7.11 Data Analysis and Accuracy -- 6.5.8 Mass Transfer -- 6.6 Validation of Column Models -- 6.7 Modeling of SMB Processes -- 6.7.1 Process Principle -- 6.7.2 SMB Process Models -- 6.7.3 TMB Model -- 6.7.4 Comparison between TMB and SMB model -- 6.7.5 Process and Operating Parameters -- 6.7.6 Experimental validation -- 6.7.6.1 Introduction -- 6.7.6.2 Results -- 7 Model Based Design and Optimization -- 7.1 Basic Principles -- 7.1.1 Objective Functions -- 7.1.1.1 Characterization of Process Performance -- 7.1.1.2 Total Separation Cost -- 7.1.2 Degrees of Freedom -- 7.1.2.1 Classification of Optimization Parameters -- 7.1.2.2 Dimensionless Representation of Operating and Design Parameters -- 7.1.3 Scaling Up and Down -- 7.1.3.1 Influence of Different HETP Coefficients for Every Component -- 7.1.3.2 Influence of Feed Concentration -- 7.1.3.3 Examples for a Single Batch Chromatographic Column -- 7.1.3.4 Examples for SMB Processes -- 7.2 Batch chromatography. , 7.2.1 Fractionation Mode (Cut Strategy).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Preparative layer chromatography. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (651 pages)
    Edition: 3rd ed.
    ISBN: 9783527816316
    DDC: 615.1901
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- List of Abbreviations -- Notation -- Chapter 1 Introduction -- 1.1 Chromatography, Development, and Future Trends -- 1.2 Focus of the Book -- 1.3 Suggestions on How to Read this Book -- References -- Chapter 2 Fundamentals and General Terminology -- 2.1 Principles and Features of Chromatography -- 2.2 Analysis and Description of Chromatograms -- 2.2.1 Voidage and Porosity -- 2.2.2 Retention Times and Capacity Factors -- 2.2.3 Efficiency of Chromatographic Separations -- 2.2.4 Resolution -- 2.2.5 Pressure Drop -- 2.3 Mass Transfer and Fluid Dynamics -- 2.3.1 Principles of Mass Transfer -- 2.3.2 Fluid Distribution in the Column -- 2.3.3 Packing Nonidealities -- 2.3.4 Extra‐Column Effects -- 2.4 Equilibrium Thermodynamics -- 2.4.1 Definition of Isotherms -- 2.4.2 Models of Isotherms -- 2.4.2.1 Single‐Component Isotherms -- 2.4.2.2 Multicomponent Isotherms Based on the Langmuir Model -- 2.4.2.3 Competitive Isotherms Based on the Ideal Adsorbed Solution Theory -- 2.4.2.4 Steric Mass Action Isotherms -- 2.4.3 Relation Between Isotherms and Band Shapes -- 2.5 Column Overloading and Operating Modes -- 2.5.1 Overloading Strategies -- 2.5.2 Beyond Isocratic Batch Elution -- References -- Chapter 3 Stationary Phases -- 3.1 Survey of Packings and Stationary Phases -- 3.2 Inorganic Sorbents -- 3.2.1 Activated Carbons -- 3.2.2 Synthetic Zeolites -- 3.2.3 Porous Oxides: Silica, Activated Alumina, Titania, Zirconia, and Magnesia -- 3.2.4 Silica -- 3.2.4.1 Surface Chemistry -- 3.2.4.2 Mass Loadability -- 3.2.5 Diatomaceous Earth -- 3.2.6 Reversed Phase Silicas -- 3.2.6.1 Silanization of the Silica Surface -- 3.2.6.2 Silanization -- 3.2.6.3 Starting Silanes -- 3.2.6.4 Parent Porous Silica -- 3.2.6.5 Reaction and Reaction Conditions -- 3.2.6.6 Endcapping. , 3.2.6.7 Chromatographic Characterization of Reversed Phase Silicas -- 3.2.6.8 Chromatographic Performance -- 3.2.6.9 Hydrophobic Properties Retention Factor (Amount of Organic Solvent for Elution), Selectivity -- 3.2.6.10 Shape Selectivity -- 3.2.6.11 Silanol Activity -- 3.2.6.12 Purity -- 3.2.6.13 Improved pH Stability Silica -- 3.2.7 Aluminum Oxide -- 3.2.8 Titanium Dioxide -- 3.2.9 Other Oxides -- 3.2.9.1 Magnesium Oxide -- 3.2.9.2 Zirconium Dioxide -- 3.2.10 Porous Glasses -- 3.3 Cross‐Linked Organic Polymers -- 3.3.1 General Aspects -- 3.3.2 Hydrophobic Polymer Stationary Phases -- 3.3.3 Hydrophilic Polymer Stationary Phases -- 3.3.4 Ion Exchange (IEX) -- 3.3.4.1 Optimization of Ion‐Exchange Resins -- 3.3.5 Mixed Mode -- 3.3.6 Hydroxyapatite -- 3.3.7 Designed Adsorbents -- 3.3.7.1 Protein A Affinity Sorbents -- 3.3.7.2 Other IgG Receptor Proteins: Protein G and Protein L -- 3.3.7.3 Sorbents for Derivatized/Tagged Compounds: Immobilized Metal Affinity Chromatography (IMAC) -- 3.3.7.4 Other Tag‐Based Affinity Sorbents -- 3.3.8 Customized Adsorbents -- 3.3.8.1 Low Molecular Weight Ligands -- 3.3.8.2 Natural Polymers (Proteins, Polynucleotides) -- 3.3.8.3 Artificial Polymers -- 3.4 Advective Chromatographic Materials -- 3.4.1 Adsorptive Membranes and Grafted‐Polymer Membranes -- 3.4.2 Adsorptive Nonwovens -- 3.4.3 Fiber/Particle Composites -- 3.4.4 Area‐Enhanced Fibers -- 3.4.5 Monolith -- 3.4.6 Chromatographic Materials for Larger Molecules -- 3.5 Chiral Stationary Phases -- 3.5.1 Cellulose‐ and Amylose‐Based CSP -- 3.5.2 Antibiotic CSP -- 3.5.3 Cyclofructan‐Based CSP -- 3.5.4 Synthetic Polymers -- 3.5.5 Targeted Selector Design -- 3.5.6 Further Developments -- 3.6 Properties of Packings and Their Relevance to Chromatographic Performance -- 3.6.1 Chemical and Physical Bulk Properties -- 3.6.2 Morphology. , 3.6.3 Particulate Adsorbents: Particle Size and Size Distribution -- 3.6.4 Pore Texture -- 3.6.5 Pore Structural Parameters -- 3.6.6 Comparative Rating of Columns -- 3.7 Sorbent Maintenance and Regeneration -- 3.7.1 Cleaning in Place (CIP) -- 3.7.2 CIP for IEX -- 3.7.3 CIP of Protein A Sorbents -- 3.7.4 Conditioning of Silica Surfaces -- 3.7.5 Sanitization in Place (SIP) -- 3.7.6 Column and Adsorbent Storage -- References -- Chapter 4 Selection of Chromatographic Systems -- 4.1 Definition of the Task -- 4.2 Mobile Phases for Liquid Chromatography -- 4.2.1 Stability -- 4.2.2 Safety Concerns -- 4.2.3 Operating Conditions -- 4.2.4 Aqueous Buffer Systems -- 4.3 Adsorbent and Phase Systems -- 4.3.1 Choice of Phase System Dependent on Solubility -- 4.3.2 Improving Loadability for Poor Solubilities -- 4.3.3 Dependency of Solubility on Sample Purity -- 4.3.4 Generic Gradients for Fast Separations -- 4.4 Criteria for Choosing Normal Phase Systems -- 4.4.1 Retention in NP Systems -- 4.4.2 Solvent Strength in Liquid-Solid Chromatography -- 4.4.3 Pilot Technique Thin‐Layer Chromatography Using the PRISMA Model -- 4.4.3.1 Step (1): Solvent Strength Adjustment -- 4.4.3.2 Step (2): Optimization of Selectivity -- 4.4.3.3 Step (3): Final Optimization of the Solvent Strength -- 4.4.3.4 Step (4): Determination of the Optimum Mobile Phase Composition -- 4.4.4 Strategy for an Industrial Preparative Chromatography Laboratory -- 4.4.4.1 Standard Gradient Elution Method on Silica -- 4.4.4.2 Simplified Procedure -- 4.5 Criteria for Choosing Reversed Phase Systems -- 4.5.1 Retention and Selectivity in RP Systems -- 4.5.2 Gradient Elution for Small Amounts of Product on RP Columns -- 4.5.3 Rigorous Optimization for Isocratic Runs -- 4.5.4 Rigorous Optimization for Gradient Runs -- 4.5.5 Practical Recommendations -- 4.6 Criteria for Choosing CSP Systems. , 4.6.1 Suitability of Preparative CSP -- 4.6.2 Development of Enantioselectivity -- 4.6.3 Optimization of Separation Conditions -- 4.6.3.1 Determination of Racemate Solubility -- 4.6.3.2 Selection of Elution Order -- 4.6.3.3 Optimization of Mobile/Stationary Phase Composition, Including Temperature -- 4.6.3.4 Determination of Optimum Separation Step -- 4.6.4 Practical Recommendations -- 4.7 Downstream Processing of mAbs Using Protein A and IEX -- 4.8 Size‐Exclusion Chromatography (SEC) -- 4.9 Overall Chromatographic System Optimization -- 4.9.1 Conflicts During Optimization of Chromatographic Systems -- 4.9.2 Stationary Phase Gradients -- References -- Chapter 5 Process Concepts -- 5.1 Discontinuous Processes -- 5.1.1 Isocratic Operation -- 5.1.2 Gradient Chromatography -- 5.1.3 Closed‐Loop Recycling Chromatography -- 5.1.4 Steady‐State Recycling Chromatography (SSRC) -- 5.1.5 Flip‐Flop Chromatography -- 5.1.6 Chromatographic Batch Reactors -- 5.2 Continuous Processes -- 5.2.1 Column Switching Chromatography -- 5.2.2 Annular Chromatography -- 5.2.3 Multiport Switching Valve Chromatography (ISEP/CSEP) -- 5.2.4 Isocratic Simulated Moving Bed (SMB) Chromatography -- 5.2.5 SMB Chromatography with Variable Process Conditions -- 5.2.5.1 Varicol -- 5.2.5.2 PowerFeed -- 5.2.5.3 Partial‐Feed, Partial‐Discard, and Fractionation‐Feedback Concepts -- 5.2.5.4 Improved/Intermittent SMB (iSMB) -- 5.2.5.5 Modicon -- 5.2.5.6 FF‐SMB -- 5.2.6 Gradient SMB Chromatography -- 5.2.7 Supercritical Fluid Chromatography (SFC) -- 5.2.7.1 Supercritical Batch Chromatography -- 5.2.7.2 Supercritical SMB processes -- 5.2.8 Multicomponent Separations -- 5.2.9 Multicolumn Systems for Bioseparations -- 5.2.9.1 Multicolumn Capture Chromatography (MCC) -- 5.2.9.2 Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) -- 5.2.10 Countercurrent Chromatographic Reactors. , 5.2.10.1 SMB Reactor -- 5.2.10.2 SMB Reactors with Distributed Functionalities -- 5.3 Choice of Process Concepts -- 5.3.1 Scale -- 5.3.2 Range of k′ -- 5.3.3 Number of Fractions -- 5.3.4 Example 1: Lab Scale -- Two Fractions -- 5.3.5 Example 2: Lab Scale -- Three or More Fractions -- 5.3.6 Example 3: Production Scale -- Wide Range of k′ -- 5.3.7 Example 4: Production Scale -- Two Main Fractions -- 5.3.8 Example 5: Production Scale -- Three Fractions -- 5.3.9 Example 6: Production Scale -- Multistage Process -- References -- Chapter 6 Modeling of Chromatographic Processes -- 6.1 Introduction -- 6.2 Models for Single Chromatographic Columns -- 6.2.1 Equilibrium Stage Models -- 6.2.1.1 Discontinuous Model According to Craig -- 6.2.1.2 Continuous Model According to Martin and Synge -- 6.2.2 Derivation of Continuous Mass Balance Equations -- 6.2.2.1 Mass Balance Equations -- 6.2.2.2 Convective Transport -- 6.2.2.3 Axial Dispersion -- 6.2.2.4 Intraparticle Diffusion -- 6.2.2.5 Mass Transfer Between Phases -- 6.2.2.6 Finite Rates of Adsorption and Desorption -- 6.2.2.7 Adsorption Equilibria -- 6.2.3 Equilibrium Model of Chromatography -- 6.2.4 Models with One Band Broadening Effect -- 6.2.4.1 Equilibrium Dispersion Model -- 6.2.4.2 Finite Adsorption Rate Model -- 6.2.5 Continuous Lumped Rate Models -- 6.2.5.1 Transport Dispersion Models -- 6.2.5.2 Lumped Finite Adsorption Rate Model -- 6.2.6 General Rate Models -- 6.2.7 Initial and Boundary Conditions of the Column -- 6.2.8 Dimensionless Model Equations -- 6.2.9 Comparison of Different Model Approaches -- 6.3 Including Effects Outside the Columns -- 6.3.1 Experimental Setup and Simulation Flow Sheet -- 6.3.2 Modeling Extra‐Column Equipment -- 6.3.2.1 Injection System -- 6.3.2.2 Piping -- 6.3.2.3 Detector -- 6.4 Calculation Methods and Software -- 6.4.1 Analytical Solutions. , 6.4.2 Numerical Solution Methods.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Cytoplasmic filaments. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (276 pages)
    Edition: 1st ed.
    ISBN: 9783642702303
    DDC: 574.8734
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Book
    Book
    Englewood Cliffs, N.J. : Prentice-Hall
    Keywords: Gleichung ; Iteration
    Type of Medium: Book
    Pages: XVIII, 310 S
    Series Statement: Prentice-Hall series in automatic computation
    DDC: 517
    Language: English
    Note: Literaturangaben
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Forests and forestry ; Statistics ; Natural resources ; Forestry ; Environmental monitoring. ; Schweiz ; Waldinventur
    Description / Table of Contents: Chapter 1. Introduction -- Chapter 2. The Swiss NFI at a glance -- Chapter 3. Inventory design and statistics -- Chapter 4. Remote Sensing -- Chapter 5. Terrestrial inventory and interview survey -- Chapter 6. Modelling -- Chapter 7. The Swiss National Forest Inventory Data Analysis System NAFIDAS -- Chapter 8. Data Quality -- Chapter 9. Appendix -- Chapter 10. Glossary
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XV, 431 p. 116 illus., 71 illus. in color)
    Edition: 1st ed. 2019
    ISBN: 9783030192938
    Series Statement: Managing Forest Ecosystems 35
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Berlin, Heidelberg : Springer Berlin Heidelberg
    Keywords: Biochemical engineering ; Chemical engineering ; Environmental sciences ; Technology ; Chemistry ; Trennverfahren
    Type of Medium: Online Resource
    Pages: Online-Ressource (XII, 366 p, digital)
    ISBN: 9783540303046
    Series Statement: SpringerLink
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Förderung erneuerbarer Energien ; Kosten ; Verteilungswirkung ; Privater Haushalt ; Diskrete Entscheidung ; Deutschland
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (34 Seiten, 359,76 KB) , Diagramme
    Series Statement: Discussion paper / SFB 823 Nr. 2017, 11
    Language: German
    Note: Literaturverzeichnis: Seite 27-30
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Forschungsbericht ; Brustkrebs ; Marker ; Radioaktiver Stoff ; Bildgebendes Verfahren
    Type of Medium: Online Resource
    Pages: Online-Ressource (29 S., 2,19 MB) , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 13N11143. - Verbund-Nr. 01079361 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Forschungsbericht ; Kraftfahrzeug ; Automation ; Bordnetz ; Netzwerktopologie ; Fehlertoleranz ; Redundanz ; Ersatzschalteinrichtung ; Halbleiterschalter
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (60 Seiten, 5,43 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 16EMO0203 , Verbundnummer 01173442 , Autoren dem Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...