GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2020-02-06
    Description: Ocean acidification may affect zooplankton directly by decreasing in pH, as well as indirectly via trophic pathways, where changes in carbon availability or pH effects on primary producers may cascade up the food web thereby altering ecosystem functioning and community composition. Here, we present results from a mesocosm experiment carried out during 113 days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to predicted end-of-century pCO2 levels. We did not observe any pCO2 effect on the diversity of the mesozooplankton community, but a positive pCO2 effect on the total mesozooplankton abundance. Furthermore, we observed species-specific sensitivities to pCO2 in the two major groups in this experiment, copepods and hydromedusae. Also stage-specific pCO2 sensitivities were detected in copepods, with copepodites being the most responsive stage. Focusing on the most abundant species, Pseudocalanus acuspes, we observed that copepodites were significantly more abundant in the high-pCO2 treatment during most of the experiment, probably fuelled by phytoplankton community responses to high-pCO2 conditions. Physiological and reproductive output was analysed on P. acuspes females through two additional laboratory experiments, showing no pCO2 effect on females’ condition nor on egg hatching. Overall, our results suggest that the Gullmar Fjord mesozooplankton community structure is not expected to change much under realistic end-of-century OA scenarios as used here. However, the positive pCO2 effect detected on mesozooplankton abundance could potentially affect biomass transfer to higher trophic levels in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Algueró-Muñiz, Maria; Alvarez-Fernandez, Santiago; Thor, Peter; Bach, Lennart Thomas; Esposito, Mario; Horn, Henriette G; Ecker, Ursula; Langer, Julia A F; Taucher, Jan; Malzahn, Arne; Riebesell, Ulf; Boersma, Maarten (2017): Ocean acidification effects on mesozooplankton community development: results from a long-term mesocosm experiment. PLoS ONE, 12(4), https://doi.org/10.1371/journal.pone.0175851
    Publication Date: 2024-03-06
    Description: Ocean acidification (OA) is one of the major symptoms of the current increase in atmospheric CO2. Here, we present results from a mesocosm experiment carried out during 113 days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to predicted end-of-century pCO2 levels. Abundances of both copepods (Pseudocalanus acuspes, Temora longicornis, and Oithona similis) and hydromedusae (Hybocodon prolifer and Aglantha digitale) responded to pCO2. Furthermore, stage-specific pCO2 sensitivities were detected in copepods, copepodites being the most sensitive stage.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Day of experiment; Depth, top/min; DEPTH, water; Event label; Fish eggs; Fish larvae; Gullmar Fjord, Skagerrak, Sweden; KOSMOS_2013_Mesocosm-M1; KOSMOS_2013_Mesocosm-M10; KOSMOS_2013_Mesocosm-M2; KOSMOS_2013_Mesocosm-M3; KOSMOS_2013_Mesocosm-M4; KOSMOS_2013_Mesocosm-M5; KOSMOS_2013_Mesocosm-M6; KOSMOS_2013_Mesocosm-M7; KOSMOS_2013_Mesocosm-M8; KOSMOS_2013_Mesocosm-M9; KOSMOS 2013; LATITUDE; LONGITUDE; MESO; Mesocosm experiment; Mesocosm label; Mesozooplankton; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 6299 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-26
    Keywords: Biomass as carbon per individual; D_dominans_GROWTHEXP; EXP; Experiment; Growth rate as carbon per carbon biomass; Growth rate as carbon per individual; Taxon/taxa; Treatment: temperature; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 6 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bailey, Allison; Thor, Peter; Browman, Howard I; Fields, David M; Runge, Jeffrey A; Vermont, Alexander; Bjelland, Reidun; Thompson, Cameron; Shema, Steven; Durif, Caroline M F; Hop, Haakon (2016): Early life stages of the Arctic copepod Calanus glacialis are unaffected by increased seawater pCO2. ICES Journal of Marine Science, fsw066, https://doi.org/10.1093/icesjms/fsw066
    Publication Date: 2024-03-15
    Description: As the world's oceans continue to absorb anthropogenic CO2 from the atmosphere, the carbonate chemistry of seawater will change. This process, termed ocean acidification, may affect the physiology of marine organisms. Arctic seas are expected to experience the greatest decreases in pH in the future, as changing sea ice dynamics and naturally cold, brackish water, will accelerate ocean acidification. In this study, we investigated the effect of increased pCO2 on the early developmental stages of the key Arctic copepod Calanus glacialis. Eggs from wild-caught C. glacialis females from Svalbard, Norway (80°N), were cultured for 2 months to copepodite stage C1 in 2°C seawater under four pCO2 treatments (320, 530, 800, and 1700 matm). Developmental rate, dry weight, and carbon and nitrogen mass were measured every other day throughout the experiment, and oxygen consumption rate was measured at stages N3, N6, and C1. All endpoints were unaffected by pCO2 levels projected for the year 2300. These results indicate that naupliar development in wild populations of C. glacialis is unlikely to be detrimentally affected in a future high CO2 ocean.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Arctic; Arthropoda; Bicarbonate ion; Bicarbonate ion, standard error; Biomass/Abundance/Elemental composition; Calanus glacialis; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon content per individual; Carbon content per individual, standard error; Carbon dioxide; Carbon dioxide, standard error; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Development; Dry mass; Dry mass, standard error; Duration, number of days; Duration, number of days, standard error; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Median development time; Median development time, standard error; Nitrate; Nitrate, standard error; Nitrite; Nitrite, standard error; Nitrogen content per individual; Nitrogen content per individual, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Phosphate; Phosphate, standard error; Polar; Potentiometric titration; Registration number of species; Replicates; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, per individual; Respiration rate, oxygen, standard error; Rijpfjorden_OA; Salinity; Salinity, standard error; Silicate; Silicate, standard error; Single species; Species; Spectrophotometric; Stage; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1332 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Thor, Peter; Bailey, Allison; Halsband, Claudia; Guscelli, Ella; Gorokhova, Elena; Fransson, Agneta (2016): Seawater pH Predicted for the Year 2100 Affects the Metabolic Response to Feeding in Copepodites of the Arctic Copepod Calanus glacialis. PLoS ONE, 11(12), e0168735, https://doi.org/10.1371/journal.pone.0168735
    Publication Date: 2024-03-15
    Description: Widespread ocean acidification (OA) is transforming the chemistry of the global ocean, and the Arctic is recognised as a region where the earliest and strongest impacts of OA are expected. In the present study, metabolic effects of OA and its interaction with food availability was investigated in Calanus glacialis from the Kongsfjord, West Spitsbergen. We measured metabolic rates and RNA/DNA ratios (an indicator of biosynthesis) concurrently in fed and unfed individuals of copepodite stages CII-CIII and CV subjected to two different pH levels representative of present day and the "business as usual" IPCC scenario (RCP8.5) prediction for the year 2100. The copepods responded more strongly to changes in food level than to decreasing pH, both with respect to metabolic rate and RNA/DNA ratio. However, significant interactions between effects of pH and food level showed that effects of pH and food level act in synergy in copepodites of C. glacialis. While metabolic rates in copepodites stage CII-CIII increased by 78% as a response to food under present day conditions (high pH), the increase was 195% in CII-CIIIs kept at low pH-a 2.5 times greater increase. This interaction was absent for RNA/DNA, so the increase in metabolic rates were clearly not a reaction to changing biosynthesis at low pH per se but rather a reaction to increased metabolic costs per unit of biosynthesis. Interestingly, we did not observe this difference in costs of growth in stage CV. A 2.5 times increase in metabolic costs of growth will leave the copepodites with much less energy for growth. This may infer significant changes to the C. glacialis population during future OA.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Arctic; Arthropoda; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calanus glacialis; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Coulometric titration; DNA content per individual; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Metabolic rate of carbon per carbon mass; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Polar; Potentiometric titration; Registration number of species; Respiration; RNA/DNA ratio; Salinity; Salinity, standard deviation; Single species; Species; Svalbard_OA; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 9367 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-15
    Description: Using a targeted metabolomic approach we investigated the effects of low seawater pH on energy metabolism in two late copepodite stages (CIV and CV) of the keystone Arctic copepod species Calanus glacialis. Exposure to decreasing seawater pH (from 8.0 to 7.0) caused increased ATP, ADP and NAD+ and decreased AMP concentrations in stage CIV, and increased ATP and phospho-L-arginine and decreased AMP concentrations in stage CV. Metabolic pathway enrichment analysis showed enrichment of the TCA cycle and a range of amino acid metabolic pathways in both stages. Concentrations of lactate, malate, fumarate and alpha-ketoglutarate (all involved in the TCA cycle) increased in stage CIV, whereas only alpha-ketoglutarate increased in stage CV. Based on the pattern of concentration changes in glucose, pyruvate, TCA cycle metabolites, and free amino acids, we hypothesise that ocean acidification will lead to a shift in energy production from carbohydrate metabolism in the glycolysis toward amino acid metabolism in the TCA cycle and oxidative phosphorylation in stage CIV. In stage CV, concentrations of most of the analysed free fatty acids increased, suggesting in particular that ocean acidification increases the metabolism of stored wax esters in this stage. Moreover, aminoacyl-tRNA biosynthesis was enriched in both stages indicating increased enzyme production to handle low pH stress.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Arctic; Arthropoda; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calanus glacialis; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Coast and continental shelf; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Kongsfjord_copepod; Laboratory experiment; Metabolite; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Polar; Salinity; Salinity, standard deviation; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Stage; Temperature, water; Temperature, water, standard deviation; Type; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 2720 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway
    In:  EPIC3AMAP Assessment 2018: Arctic Ocean Acidification, Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway, pp. 15-28, ISBN: 978-82-7971-1
    Publication Date: 2018-11-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-05-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...