GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2016-03-17
    Description: Given current concern about the stability of ice sheets, and potential sea level rise, it is imperative that we are able to reconstruct and predict the response of ice sheets to climate change. The Intergovernmental Panel on Climate Change (IPCC), amongst others, have highlighted that our current ability to do so is limited. Numerical ice sheet models are a central component of the work to address this challenge. An unresolved key issue in this work concerns the volume and rate of ice mass loss needed to explain the large difference between late glacial and interglacial global sea levels. Some 20% of observed sea level rise since the Last Glacial Maximum (LGM) cannot be attributed to any known former ice mass, indicating that this inconsistency arises from the deficiencies in modelled reconstructions of ice sheet volumes and postglacial rebound. Ice sheet models are tested and refined by comparing model predictions of past ice geometries with field-based reconstructions from geological, geomorphological and ice core data. However, on the East Antarctic Ice sheet, Dronning Maud Land (DML) presents a critical gap in the empirical data required to reconstruct changes in ice sheet geometry. In addition, there is poor control on regional climate histories of ice sheet margins, because ice core locations, where detailed reconstructions of climate history exist, are located on high inland domes. This leaves numerical models of regional glaciation history largely unconstrained. MAGIC-DML is a Swedish-US-Norwegian-German-UK collaboration with a focus on filling the critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes on the western Dronning Maud Land margin. Here we describe a series of high-resolution modelling experiments to help identify those areas across western Dronning Maud Land that are the most sensitive to uncertainties in the regional climate history and the choice of model parameters. For this we employ a wide range of climate and ocean histories combining published outputs of 18 general circulation models for the LGM and mid-Holocene with ice core records. The modelling results together with remote sensing mapping of glacial landforms is informing and guiding cosmogenic nuclide sampling campaigns in western Dronning Maud Land starting 2016/17. Successful integration of numerical modelling and field investigations in an iterative manner is key to achieving the anticipated outcome of the MAGIC-DML project, a reconstruction of the long-term pattern and timing of vertical changes in ice surface elevation since the mid-Pliocene warm period, which will provide the missing empirical data required to constrain numerical ice sheet models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-10
    Description: The high incidence of cognitive impairment in the ageing population, together with the challenges it imposes to health systems, raises the question of what affect working life has on cognitive abilities. The study, therefore, reviews recent work on the longitudinal impact of psychosocial work conditions on cognitive functioning and on dementia. Relevant articles were identified by a systematic literature search in PubMed and PsycINFO using a standardised search string and specific inclusion and exclusion criteria. We included articles reporting longitudinal effects that were investigated in cohort studies, case–control studies or randomised controlled trials in the working population. Two independent reviewers evaluated the studies in three subsequent phases: (i) title–abstract screening, (ii) full-text screening and (iii) checklist-based quality assessment.Methodical evaluation of the identified articles resulted in 17 studies of adequate quality. We found evidence for a protective effect of high job control and high work complexity with people and data on the risk of cognitive decline and dementia. Moreover, cognitively demanding work conditions seem to be associated with a decreased risk of cognitive deterioration in old age.Psychosocial work conditions can have an impact on cognitive functioning and even on the risk of dementia. As the world of work is undergoing fundamental changes, such as accelerated technological advances and an ageing working population, optimising work conditions is essential in order to promote and maintain cognitive abilities into old age.
    Print ISSN: 1351-0711
    Electronic ISSN: 1470-7926
    Topics: Medicine
    Published by BMJ Publishing Group
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...