GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-08
    Description: Identification of breeding sites remains a critical step in species conservation, particularly in procellariiform seabirds whose threat status is of global concern. We designed and conducted an integrative radiotelemetry approach to uncover the breeding grounds of the critically endangered New Zealand Storm Petrel Fregetta maoriana (NZSP), a species considered extinct before its rediscovery in 2003. Solar-powered automated radio receivers and hand-held telemetry were used to detect the presence of birds on three island groups in the Hauraki Gulf near Auckland, New Zealand. At least 11 NZSP captured and radiotagged at sea were detected at night near Te Hauturu-o-Toi/Little Barrier Island with the detection of an incubating bird leading to the discovery of the first known breeding site for this species. In total, four NZSP breeding burrows were detected under mature forest canopy and three adult NZSP and two NZSP chicks were ringed. Telemetry data indicated NZSP showed strong moonlight avoidance behaviour over the breeding site, had incubation shifts of approximately 5 days and had a breeding season extending from February to June/July, a different season from other Procellariiformes in the region. Radiotelemetry, in combination with rigorously collected field data on species distribution, offers a valuable technique for locating breeding grounds of procellariiform seabirds and gaining insights into breeding biology while minimizing disturbance to sensitive species or damage to fragile habitat. Our study suggests an avenue for other breeding ground searches in one of the most threatened avian Orders, and highlights the general need for information on the location of breeding sites and understanding the breeding biology in data-deficient birds.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-09-18
    Description: Brown skuas Catharacta antarctica lonnbergi breed across a broad latitudinal range from the Antarctic to temperate regions. While information on the non-breeding distribution and behaviour for Antarctic and subantarctic populations is known, no data exist for populations breeding at temperate latitudes. We combined geolocation sensing and stable isotope analysis of feather tissue to study the non-breeding behaviour of brown skuas from the temperate Chatham Islands, a population that was historically thought to be resident year-round. Analysis of 27 non-breeding tracks across 2 winters revealed that skuas left the colony for a mean duration of 146 d, which is 64% of the duration reported for Antarctic and subantarctic populations from King George Island, South Shetland Islands, and Bird Island, South Georgia. Consistent with populations of brown skuas from Antarctica and the Subantarctic, the distribution was throughout mixed subtropical-subantarctic and shelf waters. Stable isotope analysis of 72 feathers suggests that moulting takes place over mixed subtropical-subantarctic and subtropical shelf waters. We conclude that brown skuas from the Chatham Islands are migratory, but the year-round mild environmental conditions may reduce the necessity to leave their territories for extended periods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Between 2014 and 2018 a mark-recapture/ resighting study was conducted to ascertain the size of the population of New Zealand storm petrel (Fregatta maoriana) at their breeding grounds on Hauturu, Little Barrier Island, New Zealand. A total of 415 New Zealand storm petrels were captured and marked with individual colour bands using acoustic playback and night-time spotlighting on Hauturu. Two mark-recapture models were developed using the recaptures of banded birds on land and the at-sea resightings of banded birds attracted to burley on the Hauraki Gulf near Hauturu. The landbased model suggests a current population of 994 (range 446–2,116) individuals whereas the at-sea model suggests an estimate of 1,630 (range 624–3,758) individuals. The discrepancy between these models likely lies in the bias of on-land captures towards juvenile birds constituting 〉50% of birds caught. We consider the at-sea model most representative of total population size. Logistic population growth models anchored by on-land and at-sea population estimates suggest pre-rat eradication populations of New Zealand storm petrel of 323 and 788 individuals respectively.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Accurate and repeatable population estimates are key to establishing population trends and conservation status. Rako, or Buller’s Shearwater (Ardenna bulleri) is a seabird endemic to New Zealand that breeds only on the Poor Knights Islands, but forages throughout wider areas of the Pacific Ocean during the non-breeding season. The lack of threats on the breeding grounds and the wide foraging range of Buller’s Shearwaters makes them ideal sentinels of ocean health. Although they are commonly seen at sea and the population in the 1980s was thought to be around 2.5 million birds, other rapid land-based surveys suggested a much lower figure (~100,000 pairs on Aorangi), and no thorough population estimate has been undertaken to date. We calculated a population estimate for Buller’s Shearwater based on burrow counts and state of occupancy conducted at the Poor Knights during either the 2016–2017 or the 2017–2018 breeding seasons. We incorporated information on habitat availability and preference in population models. Our estimate of 78,645 (95% confidence interval 67,176–89,178) active burrows, broadly representing breeding pairs, is lower than some previously published assessments. This is a repeatable quantitative study of the Buller’s Shearwater breeding population, including breeding activity, and provides critical baseline data to determine population trends for this potentially important marine indicator species. © 2021 BirdLife Australia.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Long-term changes in the life history and behaviour of seabirds during the non-breeding season can reflect shifts in environmental conditions. However, long-term marine studies are scarce, particularly on southern hemisphere seabirds. Here, we used moult scores from 86 Brown Skuas (Stercorarius antarcticus lonnbergi), a large predatory seabird breeding on the Chatham Islands, Aotearoa/New Zealand to model both the timing and duration of primary feather moult. In addition, we analysed stable isotope values (δ13C and δ15N) from 62 modern (2014–16) and ten museum tail feathers. These data provide insights into the non-breeding behaviour of Brown Skua. Interestingly, our results show that the primary feather moult occurred prior to birds departing the colony, starting on average on 2 January ± 5 days (SE). The average start of primary feather moult occurred five days prior to the end of breeding (7 January ± 10 days (SD)) and 42 days before the birds departed the colony (13 February ± 11 days (SD)). The average duration of primary feather moult was 189 ± 14 days (SE). Importantly, low δ13C values in four females suggested that tail feather moult might also occur while skuas are at the colony. There was no difference in tail feather δ13C and δ15N values between any pairwise comparison of modern and museum years. However, values of δ15N from tail feathers sampled in 2014 were different from those sampled in 2015 and 2016. This large annual variation in δ15N values from tail feathers over such a short period makes long-term comparisons difficult to interpret, particularly between years with low sample sizes. While the stable isotope analyses of tail feathers are informative, we recommend future studies of skuas sample the primary coverts rather than tail feathers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...