GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2020-04-23
    Description: The Upper Rhine graben is a north-northeast-trending, small-displacement, crustal-scale rift of Tertiary age. Retrodeformation of its southeastern part demonstrates that it is a product of sinistral oblique rifting. Early extension was toward 80°. Later, the major stretching axis changed to a 60° direction. The modeling results suggest that the eastern Main Border fault developed first, and that faulting later propagated into the evolving graben interior. Considerable along-strike variations in heave, throw, and displacement are evident. Displacement partitioning causes warping of the rift floor with a 30-35-km wavelength. We consider this to be a characteristic of oblique rifting. Contact deformation of the wall rocks to the major faults may have caused widespread smaller scale faulting and brecciation and may be the location of later movements. Close spatial coincidence of the depth projections of some of the faults studied and the hypocenters of recent small earthquakes indicates continuing activity of the fault system. Apparently, three fault segments in the Freiburg area are currently active and may be an increased earthquake risk.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 414 (1-4). pp. 225-240.
    Publication Date: 2016-06-15
    Description: The Northern Calcareous Alps (NCA) are the site of very large top-to-north convergent movements during Cretaceous–Tertiary Alpine mountain building. To determine the amount of shortening, the depth of detachment and the style of deformation, we retro-deformed an approximately 40 × 40 km area comprising the Lechtal and Allgäu Nappes. On the basis of all available geological data and processed sections of the TRANSALP reflection seismic experiment, coherent 3D models were constructed by splining lines from N–S cross-sections. Integration of 3D kinematic modeling and field data shows the following. The structure of the Lechtal Nappe is controlled by the Triassic Hauptdolomit. Four main thrusts link to a detachment at 2–6 km depth below sea level. Shortening estimates vary, from 25% (east) to 42% (west). Additional contraction is accommodated by folding. In the east the subjacent Allgäu Nappe can be traced about 10 km down-plunge, and is shortened by about one third. In the western part the downplunge width is at least 15–20 km, with restorable shortening of one third. The triple (Inntal, Lechtal, Allgäu Nappes) NCA nappe system was moved uniformly N–S to produce laterally heterogeneus shortening of 40–90 km or 50–67%. We suggest that the NCA are underlain by substantial amounts of buried Molasse sediments and/or overthrust units of Helvetic and Rheno-Danubian Flysch, indicating post-Eocene N–S shortening of at least 55 km. Restored to an initial configuration, the basin topography of the NCA reveals strong E–W thickness variations of the Triassic Wettersteinkalk and Hauptdolomit platform carbonates. Such variations may pertain to N–S trending growth faults, which were important precursors to later Jurassic extension of the Austroalpine passive margin. Such structures are unlikely to be seen in the conventional N–S cross-sections, but form an essential geometrical and mechanical element in later, convergent mountain building.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...