GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract : The role of the dopamine- and cyclic AMP-regulated phosphoprotein of Mr 32,000 (DARPP-32) in dopaminergic regulation of gene transcription in striatum and globus pallidus was examined. Mice with targeted disruption of the gene encoding DARPP-32, its homologue, inhibitor-1, or both, were used. Pharmacological characterization showed that mutant mice had normal basal levels of dopamine D1 and D2 receptors and adenosine A2A receptors. Basal expression levels of the striatonigral-specific neuropeptides substance P and prodynorphin and the immediate early genes c-fos and NGFI-A were also unaltered in mutant mice. A full D1 receptor agonist, SKF 82958, up-regulated the expression of these neuropeptides and immediate early genes significantly more in wild-type mice than in mice lacking DARPP-32. Moreover, the additive stimulation of SKF 82958 and quinelorane, a D2 receptor agonist, on c-fos mRNA in globus pallidus was significantly decreased in DARPP-32 and DARPP-32/I-1 knockout mice. No changes in dopamine receptor-induced gene expression were found in I-1 knockout mice. These results demonstrate an important involvement of DARPP-32 in dopamine receptor-mediated regulation of gene expression both in striatal neurons, which are enriched in DARPP-32, and in pallidal neurons, which do not contain DARPP-32.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Methylphenidate (MPH), a dopamine uptake inhibitor, is the most commonly prescribed drug for the treatment of attention-deficit/hyperactivity disorder (ADHD) in children. We examined the effect of MPH on dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32) phosphorylation at Thr34 (PKA-site) and Thr75 (Cdk5-site) using neostriatal slices from young (14–15- and 21–22-day-old) and adult (6–8-week-old) mice. MPH increased DARPP-32 Thr34 phosphorylation and decreased Thr75 phosphorylation in slices from adult mice. The effect of MPH was blocked by a dopamine D1 antagonist, SCH23390. In slices from young mice, MPH did not affect DARPP-32 phosphorylation. As with MPH, cocaine stimulated DARPP-32 Thr34 phosphorylation in slices from adult, but not from young mice. In contrast, a dopamine D1 agonist, SKF81297, regulated DARPP-32 phosphorylation comparably in slices from young and adult mice, as did methamphetamine, a dopamine releaser. The results suggest that dopamine synthesis and the dopamine transporter are functional at dopaminergic terminals in young mice. In contrast, the lack of effect of MPH in young mice is likely attributable to immature development of the machinery that regulates vesicular dopamine release.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Pharmacology 44 (2004), S. 269-296 
    ISSN: 0362-1642
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Chemistry and Pharmacology
    Notes: Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32), was identified initially as a major target for dopamine and protein kinase A (PKA) in striatum. However, recent advances now indicate that regulation of the state of DARPP-32 phosphorylation provides a mechanism for integrating information arriving at dopaminoceptive neurons, in multiple brain regions, via a variety of neurotransmitters, neuromodulators, neuropeptides, and steroid hormones. Activation of PKA or PKG stimulates DARPP-32 phosphorylation at Thr34 and thereby converts DARPP-32 into a potent inhibitor of protein phosphatase-1 (PP-1). DARPP-32 is also phosphorylated at Thr75 by Cdk5 and this converts DARPP-32 into an inhibitor of PKA. Thus, DARPP-32 has the unique property of being a dual-function protein, acting either as an inhibitor of PP-1 or of PKA. The state of phosphorylation of DARPP-32 at Thr34 depends on the phosphorylation state of two serine residues, Ser102 and Ser137, which are phosphorylated by CK2 and CK1, respectively. By virtue of its ability to modulate the activity of PP-1 and PKA, DARPP-32 is critically involved in regulating electrophysiological, transcriptional, and behavioral responses to physiological and pharmacological stimuli, including antidepressants, neuroleptics, and drugs of abuse.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Using in situ hybridization, we examined the mRNA expression for several immediate early genes in dopamine-innervated brain areas following electrical burst vs. regular stimulation of the medial forebrain bundle in anaesthetized rats. Two hours after 5 Hz burst stimulation, the expression of the nerve growth factor-inducible clone A (NGFI-A) mRNA was increased in the medial part of the striatum. This increase was prevented by pretreatment with the dopamine-D1 receptor antagonist, SCH23390 (0.1 mg/kg i.p.). After 8 Hz burst stimulation, NGFI-A mRNA expression was increased in the medial, central and lateral parts of the striatum. Induction occurred predominantly in cells expressing mRNAs for the dopamine-D1 receptor, substance P and dopamine and CAMP-regulated phosphoprotein (DARP-32). Regular stimulation had no effect on NGFI-A mRNA expression. The induction of NGFI-A was related to the levels of dopamine released by burst or regular stimulation as demonstrated with in vivo amperometry. Two hours after stimulation, the expression of none of the other genes studied was altered. One hour after 8 Hz burst stimulation, the expression of NGFI-A, NGFI-B and jun-B mRNAs was increased in the striatum and that of NGFI-A, NGFI-6, c-fos, fos-B and jun-B mRNAs was variably increased in the nucleus accumbens and lateral septum. These results provide additional support for the physiological importance of burst firing activity in midbrain dopamine neurons for the activation of their target cells. They demonstrate a spatial and temporal specificity as regards the brain region, the gene activated, the receptor involved and the phenotype of the cells affected.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Striatal c-fos induction was blocked by local administration of phosphorothioated c-fos antisense oligonucleotides (AS-ODN) to examine the possible role of caffeine-induced c-fos expression in transcriptional regulation of striatal preproenkephalin, prodynorphin, preprotachykinin A and neurotensin/neuromedin N. Caffeine (100 mg/kg i.p.) induced both c-fos mRNA and Fos-protein, and this induction was significantly attenuated by intrastriatal injection of 4 (but not 1) nmol c-fos AS-ODN. This suggests that, in addition to translational arrest, other mechanisms may be involved in the mediation of antisense action. The action of the AS-ODN was sequence specific. The antisense blockade of c-fos reduced the effect of caffeine on the expression of mRNAs for preprotachykinin A and neurotensin/neuromedin N in the ventrolateral caudate–putamen. Levels of preproenkephalin and prodynorphin transcripts were unaffected. Thus caffeine induction of striatal preprotachykinin A mRNA and neurotensin/neuromedin N mRNA, but not of preproenkephalin mRNA or prodynorphin mRNA, may at least in part be mediated by a pathway involving Fos protein. The findings illustrate the utility of blockade of gene expression with antisense oligonucleotides for in vivo studies of drug actions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 15 (2002), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The activity of neurons in the subthalamic nucleus controls various aspects of movement. The present study examined the action of dopamine receptor agonists on c-fos gene expression in the subthalamic nucleus in normal rats. We found that systemic administration of the dopamine D1/5 receptor agonist, SKF 82958 (1 mg/kg), induces c-fos expression in the subthalamic nucleus. In contrast, systemic administration of the dopamine D2/3 receptor agonist, quinelorane (2 mg/kg) had no effect. When combined, SKF 82958 and quinelorane induced c-fos expression in subthalamic neurons that was similar to that found following administration of SKF 82958 alone. We also examined c-fos expression in the substantia nigra pars reticulata, the major projection area for subthalamic neurons, and found that SKF 82958, but not quinelorane, caused an induction of c-fos expression in this area. In order to clarify the mechanisms underlying the SKF 82958-mediated induction of c-fos expression in the subthalamic nucleus and substantia nigra pars reticulata, in situ hybridization for the dopamine D1, D2, D3 and D5 receptor mRNAs was performed. The only significant observation was that D5 receptor mRNA is expressed in subthalamic neurons.The present data show that dopamine, via D1/D5 receptors, upregulates c-fos expression in subthalamic neurons, and that the high expression of D5 receptors in this area might be involved. Taken together, these data suggest that dopamine D1/5 receptors are more important for the action of dopamine in the so-called indirect pathway of the basal ganglia circuitry than what is recognized in current models of basal ganglia organization.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In the striatum, DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kDa) is highly expressed by virtually all projection medium-sized spiny neurons. cAMP-dependent phosphorylation of DARPP-32 is stimulated via activation of dopamine D1 receptors in striatonigral neurons, and via activation of adenosine A2A receptors in striatopallidal neurons. In this study, we have examined the contribution of μ-, δ- and κ-opioid receptors to the regulation of DARPP-32 phosphorylation, in rat striatal slices. The results show that, at low concentrations (100 p m–1 n m), the μ-opioid agonist, Tyr-D-Ala-Gly-N-Me-Phe-glycinol (DAMGO), inhibits the increase in DARPP-32 phosphorylation induced by activation of D1, but not by activation of A2A receptors. Conversely, the δ-receptor agonist, Tyr-D-Pen-Gly-Phe-D-Pen (DPDPE), inhibits DARPP-32 phosphorylation induced by activation of A2A, but not by activation of D1 receptors. The κ-receptor agonist, U50488, does not affect DARPP-32 phosphorylation induced by either D1 or A2A agonists. Thus, μ-opioid receptors interact with dopamine D1 receptors on striatonigral neurons, whereas δ-opioid receptors interact with adenosine A2A receptors on striatopallidal neurons. These results suggest that regulation of DARPP-32 phosphorylation is involved in mediating some of the effects exerted by enkephalin on striatal medium-sized spiny neurons.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: By using in vivo microdialysis it was found that one of the main functions of striatal dopamine D1 receptors is to selectively facilitate GABAergic neurotransmission in the ‘direct’strioentopeduncular pathway. D1 receptors localized in the entopeduncular nucleus were also found to facilitate GABA release. However, results obtained from in vivo microdialysis, in vivo electrochemistry, immunohistochemistry and confocal laser microscopy suggested that entopeduncular D1 receptors could only be activated under pharmacological conditions. Adenosine A1 receptors were found to antagonistically modulate the D1-mediated regulation of the strioentopeduncular pathway. Furthermore, using in situ hybridization D1 and A1 receptors were shown to be colocalized in medium-sized striatal neurons. These results show that the strioentopeduncular neuron is a main locus for adenosine-dopamine interactions in the brain.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Caffeine has been imbibed since ancient times in tea and coffee, and more recently in colas. Caffeine owes its psychostimulant action to a blockade of adenosine A2A receptors, but little is known about its intracellular mechanism of action. Here we show that the stimulatory effect of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Cocaine enhances dopamine-mediated neurotransmission by blocking dopamine re-uptake at axon terminals. Most dopamine-containing nerve terminals innervate medium spiny neurons in the striatum of the brain. Cocaine addiction is thought to stem, in part, from neural adaptations that act to ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...