GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Terra nova 2 (1990), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Tomographic results show the presence of a high-velocity anomaly dipping north beneath the Aegean Sea (Hellenic arc), down to a depth of at least 600 km. This anomaly is interpreted as the image of the subducting lithosphere of the African plate. No deep seismicity, however, is associated with this downgoing slab, although this would be expected on the basis of the age of the downbending lithosphere (approximately 100 Myr) and the inferred duration of the present ongoing episode of subduction.Using a thermo-mechanical model for the subduction zone we find that the non-stationary input of the subduction zone-both in convergence rate and in thermal structure of the downgoing lithosphere - adequately accounts for both the presence of a velocity anomaly associated with a slab and the absence of deep seismicity. The non-stationarity follows from the large-scale tectonic setting of the Eastern Mediterranean basin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 115 (1993), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: To investigate the morphology of subducted slab in the mantle below northwest Pacific island arcs we inverted traveltime residuals for aspherical variations in P-wave propagation velocity relative to the radially symmetric iasp91 reference model. The tomographic method used is based on a step-wise linearization of the inversion problem. First, we relocated ISC (International Seismological Centre) hypocentres with re-identified P and pP phase data using the iasp91 traveltime tables. The variance of P residuals relative to iasp91 traveltimes was 17 per cent less than the variance of P data reported by the ISC relative to the Jeffreys-Bullen (J-B) traveltime tables. Second, we performed a linearized (LSQR) inversion for Earth structure and source relocation with the P and pP residuals obtained from the first step, using iasp91 as the reference model for seismic velocities. The incorporation of the depth phase pP in the tomographic inversions has two major advantages: (1) the pP data provide constraints on focal depth and thus reduce the trade-off between source relocation and structure; and (2) the pP ray paths improve the sampling of Earth structure in the shallow mantle and transition zone. We used more than 2 times 106 and about 1 times 105P- and pP-wave traveltime residuals, respectively, from about 40 000 earthquakes with epicentres in the study region that were recorded at one or more of the 2300 globally distributed seismological stations considered in this study.We assessed the spatial resolution in the tomographic images with checker board-type sensitivity tests. These tests reveal high resolution of upper mantle and transition-zone structure, particularly below the central part of our study region. Structure with wavelengths of the order of 100 km is resolved below Japan, whereas structure with wavelengths of the order of 300 km is well resolved below the Kuril, Izu Bonin and Ryukyu arcs. Small-scale structure is poorly resolved in depth below the northern part of the Kuril-Kamchatka arc and below the Izu Bonin and Mariana arcs. This limits the interpretation of slab structure and mantle flow from tomographic images alone.With this limitation in mind, we conclude from the tomographic images that subducted slab deflects in the mantle transition zone below the geographical area encompassed by the Kuril basin, the Japan Sea, and the northern part of the Philippine Sea. This is in good agreement with the results of other recently published tomographic studies, the occurrence of earthquakes several hundred kilometres off the inclined Wadati-Benioff seismic zones, and inferences about ‘660 km’ discontinuity topography. In contrast, slab-like structures of high P-wave velocity are imaged in the lower mantle below the deepest earthquakes of the northern Kuril-Kamchatka and Mariana seismic zones. This is indicative of local slab penetration of the lower mantle. From tomographic images we cannot discern between compositionally or thermally induced variations in seismic velocity. However, with regard to the nature of the boundary between upper and lower mantle, our observations argue against either compositional mantle layering with large contrasts in intrinsic density or phase changes with steep Clapeyron slopes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 79 (1993), S. 3-74 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-24
    Description: TOPO-EUROPE addresses the 4-D topographic evolution of the orogens and intra-plate regions of Europe through a multidisciplinary approach linking geology, geophysics, geodesy and geotechnology. TOPO-EUROPE integrates monitoring, imaging, reconstruction and modelling of the interplay between processes controlling continental topography and related natural hazards. Until now, research on neotectonics and related topography development of orogens and intra-plate regions has received little attention. TOPO-EUROPE initiates a number of novel studies on the quantification of rates of vertical motions, related tectonically controlled river evolution and land subsidence in carefully selected natural laboratories in Europe. From orogen through platform to continental margin, these natural laboratories include the Alps/Carpathians–Pannonian Basin System, the West and Central European Platform, the Apennines–Aegean–Anatolian region, the Iberian Peninsula, the Scandinavian Continental Margin, the East-European Platform, and the Caucasus–Levant area. TOPO-EUROPE integrates European research facilities and know-how essential to advance the understanding of the role of topography in Environmental Earth System Dynamics. The principal objective of the network is twofold. Namely, to integrate national research programs into a common European network and, furthermore, to integrate activities among TOPO-EUROPE institutes and participants. Key objectives are to provide an interdisciplinary forum to share knowledge and information in the field of the neotectonic and topographic evolution of Europe, to promote and encourage multidisciplinary research on a truly European scale, to increase mobility of scientists and to train young scientists. This paper provides an overview of the state-of-the-art of continental topography research, and of the challenges to TOPO-EUROPE researchers in the targeted natural laboratories
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-12-14
    Description: The Payún Matrú Volcanic Field (Pleistocene–Holocene) is located in the Andean back-arc of the Southern Volcanic Zone, western Argentina, and is contemporaneous with the Andean volcanic arc at the same latitude. It includes two polygenetic, mostly trachytic volcanoes: Payún Matrú (with a summit caldera 8 km wide) and Payún Liso (a smaller stratovolcano). The volcanic field includes about 200 scoria cones and alkali basaltic and trachybasaltic lava flows, forming two basaltic fields around Payún Matrú. New 40 Ar– 39 Ar ages extend the activity of Payún Matrú up to 700 ka. The major and trace element and Sr–Nd isotopic compositions of the basaltic lavas and Payún Matrú rocks indicate that the trachytes of Payún Matrú are the result of fractional crystallization of basaltic parent magmas without significant upper crustal contamination, and that the basalts have a geochemical similarity to ocean island basalt (La/Nb = 0·8–1·5, La/Ba = 0·05–0·08). The Sr–Nd isotopic compositions of the basaltic to trachytic rocks range between 0·703813 and 0·703841 ( 87 Sr/ 86 Sr) and 0·512743 and 0·512834 ( 143 Nd/ 144 Nd). Mass-balance and Rayleigh fractionation models support the proposed origin of the trachytes, and an assimilation–fractional crystallization model indicates a low degree of upper crustal contamination in the youngest trachytes. Magnesium numbers (45–55) and contents of Ni (〈20–90 ppm) and Cr (30–180 ppm) in the lavas in the basaltic fields indicate that these are not primary magmas. The data also suggest that the basaltic lavas originated in the asthenospheric mantle, probably within the spinel stability field and beneath an attenuated continental lithosphere in the back-arc area. The lack of a slab-fluid signature in the Payún Matrú Volcanic Field rocks, along with unpublished and published geophysical results (mantle tomography and electrical conductivity anomalies) suggest that magmas were generated by decompression-induced melting of upwelling mantle.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-26
    Description: Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-11-01
    Description: This paper presents a synthetic view of the geodynamic evolution of the Zagros orogen within the frame of the Arabia-Eurasia collision. The Zagros orogen and the Iranian plateau preserve a record of the long-standing convergence history between Eurasia and Arabia across the Neo-Tethys, from subduction/obduction processes to present-day collision (from ~ 150 to 0 Ma). We herein combine the results obtained on several geodynamic issues, namely the location of the oceanic suture zone, the age of oceanic closure and collision, the magmatic and geochemical evolution of the Eurasian upper plate during convergence (as testified by the successive Sanandaj-Sirjan, Kermanshah and Urumieh-Dokhtar magmatic arcs), the P-T-t history of the few Zagros blueschists, the convergence characteristics across the Neo-Tethys (kinematic velocities, tomographic constraints, subduction zones and obduction processes), together with a survey of recent results gathered by others. We provide lithospheric-scale reconstructions of the Zagros orogen from ~ 150 to 0 Ma across two SW-NE transects. The evolution of the Zagros orogen is also compared to those of the nearby Turkish and Himalayan orogens. In our geotectonic scenario for the Zagros convergence, we outline three main periods/regimes: (1) the Mid to Late Cretaceous (115-85 Ma) corresponds to a distinctive period of perturbation of subduction processes and interplate mechanical coupling marked by blueschist exhumation and upper-plate fragmentation, (2) the Paleocene-Eocene (60-40 Ma) witnesses slab break-off, major shifts in arc magmatism and distributed extension within the upper plate, and (3) from the Oligocene onwards (~ 30-0 Ma), collision develops with a progressive SW migration of deformation and topographic build-up (Sanandaj-Sirjan Zone: 20-15 Ma, High Zagros: ~12-8 Ma; Simply Folded Belt: 5-0 Ma) and with partial slab tear at depths (~10 Ma to present). Our reconstructions underline the key role played by subduction throughout the whole convergence history. We finally stress that such a long-lasting subduction system with changing boundary conditions also makes the Zagros orogen an ideal natural laboratory for subduction processes.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-10-03
    Description: We recently presented a compilation of paleomagnetic data arguing for Cretaceous extension within Greater India. These data imply that a Tibetan Himalayan (TH) microcontinent rifted away from India, opening an oceanic Greater India Basin (GIB) in its wake. Consequently, we postulated a two-stage India-Asia collision at ∼52 and 25–20 Ma...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-04-07
    Description: Sensitivity analysis with synthetic models is widely used in seismic tomography as a means for assessing the spatial resolution of solutions produced by, in most cases, linear or iterative nonlinear inversion schemes. The most common type of synthetic reconstruction test is the so-called checkerboard resolution test in which the synthetic model comprises an alternating pattern of higher and lower wave speed (or some other seismic property such as attenuation) in 2-D or 3-D. Although originally introduced for application to large inverse problems for which formal resolution and covariance could not be computed, these tests have achieved popularity, even when resolution and covariance can be computed, by virtue of being simple to implement and providing rapid and intuitive insight into the reliability of the recovered model. However, checkerboard tests have a number of potential drawbacks, including (1) only providing indirect evidence of quantitative measures of reliability such as resolution and uncertainty, (2) giving a potentially misleading impression of the range of scale-lengths that can be resolved, and (3) not giving a true picture of the structural distortion or smearing that can be caused by the data coverage. The widespread use of synthetic reconstruction tests in seismic tomography is likely to continue for some time yet, so it is important to implement best practice where possible. The goal of this paper is to develop the underlying theory and carry out a series of numerical experiments in order to establish best practice and identify some common pitfalls. Based on our findings, we recommend (1) the use of a discrete spike test involving a sparse distribution of spikes, rather than the use of the conventional tightly spaced checkerboard; (2) using data coverage (e.g. ray-path geometry) inherited from the model constrained by the observations (i.e. the same forward operator or matrix), rather than the data coverage obtained by solving the forward problem through the synthetic model; (3) carrying out multiple tests using structures of different scale length; (4) taking special care with regard to what can be inferred when using synthetic structures that closely mimic what has been recovered in the observation-based model; (5) investigating the range of structural wavelengths that can be recovered using realistic levels of imposed data noise; and (6) where feasible, assessing the influence of model parametrization error, which arises from making a choice as to how structure is to be represented.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-05-16
    Description: Cenozoic convergence between the Indian and Asian plates produced the archetypical continental collision zone comprising the Himalaya mountain belt and the Tibetan Plateau. How and where India–Asia convergence was accommodated after collision at or before 52 Ma remains a long-standing controversy. Since 52 Ma, the two plates have converged up to 3,600 ± 35 km, yet the upper crustal shortening documented from the geological record of Asia and the Himalaya is up to approximately 2,350-km less. Here we show that the discrepancy between the convergence and the shortening can be explained by subduction of highly extended continental and oceanic Indian lithosphere within the Himalaya between approximately 50 and 25 Ma. Paleomagnetic data show that this extended continental and oceanic “Greater India” promontory resulted from 2,675 ± 700 km of North–South extension between 120 and 70 Ma, accommodated between the Tibetan Himalaya and cratonic India. We suggest that the approximately 50 Ma “India”–Asia collision was a collision of a Tibetan-Himalayan microcontinent with Asia, followed by subduction of the largely oceanic Greater India Basin along a subduction zone at the location of the Greater Himalaya. The “hard” India–Asia collision with thicker and contiguous Indian continental lithosphere occurred around 25–20 Ma. This hard collision is coincident with far-field deformation in central Asia and rapid exhumation of Greater Himalaya crystalline rocks, and may be linked to intensification of the Asian monsoon system. This two-stage collision between India and Asia is also reflected in the deep mantle remnants of subduction imaged with seismic tomography.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...