GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2015-06-15
    Description: A methodology for estimating secular daily minimum, mean and maximum (Tn, Tm and Tx) temperature records for any urbanised point of a 30-arc-second-resolution grid covering Italy is presented. It is based on the superimposition of 1961–1990 climatologies and departures from them (anomalies). The anomalies are obtained by applying inverse distance weighting to 143 Italian high-quality records, whereas the climatologies are based on a larger dataset and on the application of local weighted linear regression of temperature versus elevation.The grid-point Tn, Tm and Tx records are then used to set up secular records (period 1801–2013) of temperature-derived variables that influence Italy present-time national electricity demand. They are national averages over Italian urbanised areas of cooling degree-days (CDD), heating degree-days (HDD) and solar radiation deficit with respect to a defined threshold (S), with solar radiation estimated using daily temperature range as a proxy.The monthly and yearly sums of the daily CDD, HDD and S records are then used, alongside with a model allowing to link these variables to present-time Italy electricity demand, in order to understand the impact of climate variability and change on present-time Italian electricity demand. We find that temperature changes as the ones observed in the last two centuries are capable of altering significantly the present-time monthly profile of the electricity demand, raising (lowering) summer (winter) months contributions. The impact is higher in summer months where it exceeds 5 % of present-time Italy average monthly electricity demand, whereas the decrease of the winter demand is rather low because of a very limited use of electricity for heating. The summer and winter opposite-sign changes result globally in an increase of the yearly demand of about 5 TWh, corresponding to about 1.5-2.0 % of present-time Italy yearly electricity demand.
    Electronic ISSN: 2194-6434
    Topics: Geosciences
    Published by SpringerOpen
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...