GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Lactic acid bacteria--Congresses. ; Electronic books.
    Description / Table of Contents: Proceedings of the Seventh Symposium on Lactic Acid Bacteria: Genetics, Metabolism and Applications, September 1-5, 2002, Egmond aan Zee, The Netherlands.
    Type of Medium: Online Resource
    Pages: 1 online resource (372 pages)
    Edition: 1st ed.
    ISBN: 9789401720298
    Language: English
    Note: Intro -- Table of Contents -- Lactic acid bacteria: genetics, metabolism and applications -- The cell membrane and the struggle for life of lactic acid bacteria -- Discovering lactic acid bacteria by genomics -- Global control of sugar metabolism: a Gram-positive solution -- Comparative genomics of phages and pro phages in lactic acid bacteria -- Gene regulation in Lactococcus lactis: the gap between predicted and characterized regulators -- Transcriptome analysis and related databases of Lactococcus lactis -- Genome plasticity in Lactococcus lactis -- Regulation of antimicrobial peptide production by autoinducer-mediatedquorum sensing in lactic acid bacteria -- Transporters and their roles in LAB cell physiology -- Lantibiotics produced by lactic acid bacteria: structure, function and applications -- Stress responses in lactic acid bacteria -- Metabolic engineering of lactic acid bacteria for the production of nutraceuticals -- Experimental determination of control of glycolysis in Lactococcus lactis -- Metabolism of lactic acid bacteria studied by nuclear magnetic resonance -- Respiration capacity and consequences in Lactococcus lactis -- Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains -- Probiotics: an overview of beneficial effects -- Product development strategies for foods in the era of molecular biotechnology -- Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application -- In situ delivery of cytokines by genetically engineered Lactococcus lactis -- Anti-hypertensive activity of fermented dairy products containing biogenic peptides -- The Intestinal LABs -- Lactic acid bacteria in a changing legislative environment -- Genetically modified Streptococcus mutans for the prevention of dental caries. , Exploiting exopolysaccharides from lactic acid bacteria.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Lantibiotics form a family of highly modified peptides which are secreted by several Gram-positive bacteria. They exhibit antimicrobial activity, mainly against other Gram-positive bacteria, by forming pores in the cellular membrane. These antimicrobial peptides are ribosomally synthesized and contain leader peptides which do not show the characteristics of signal sequences. Several amino acid residues of the precursor lantibiotic are enzymatically modified, whereafter secretion and processing of the leader peptide takes place, yielding the active antimicrobial substance. For several lantibiotics the gene clusters encoding biosynthetic enzymes, translocator proteins, self-protection proteins, processing enzymes and regulatory proteins have been identified. This MicroReview describes the current knowledge about the biosynthetic, immunity and regulatory processes leading to lantibiotic production. Most of the attention is focused on the lantibiotic nisin, which is produced by the food-grade bacterium Lactococcus lactis and is widely used as a preservative in the food industry.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Clinical isolates of Enterococcus faecalis more commonly produce a cytolysin than do commensal isolates. Epidemiologic evidence and animal-model studies have established a role for the cytolysin in the pathogenesis of enterococcal disease. The cytolysin consists of two structural subunits, CylLL and CylLs, that are activated by a third component, CylA. Genetic and biochemical characterization of CylA indicate that it is a serine protease, and that activation putatively results from cleavage of one or both cytolysin subunits. Genetic evidence also suggests that the cytolysin subunits are related to the rapidly growing class of bacteriocins termed lantibiotics. However, unlike lantibiotics, the cytolysin is lytic for eukaryotic as well as prokaryotic cells, and it consists of two structural subunits. This report describes the purification and characterization of the cytolysin subunits and detection of lanthionine-type post-translational modifications within their structures. Furthermore, the cleavage specificity of the CylA activator is reported and it is shown that proteolytic activation of both subunits is essential for activity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4978
    Keywords: fur gene ; furin ; proprotein processing ; Von Willebrand factor ; subtilisin family of serine proteases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The human fur gene encodes a protein, designated furin, the C-terminal half of which contains a transmembrane and a cysteine-rich receptor-like domain. The N-terminal half of furin exhibits striking primary amino acid sequence similarity to the catalytic domains of members of the subtilisin family of serine proteases. We here report characteristics of the furin protein and propose a three-dimensional model for its presumptive catalytic domain with characteristics, that predict furin to exhibit an endo-proteolytic cleavage selectivity at paired basic residues. This prediction is substantiated by transfection and cotransfection experiments, using COS-1 cells. Full length fur cDNA evokes the specific synthesis of two polypeptides of about 100 kDa and 90 kDa as appeared from Western blot analysis of transfected COS-1 cells using a polyclonal anti-furin antiserum. Functional analysis of furin was performed by cotransfection of fur cDNA with cDNA encoding the ‘wild type’ precursor of von Willebrand factor (pro-vWF) and revealed an increased proteolytic processing of prov WF. In contrast, cotransfection of fur cDNA with a recombinat derivative (provWFgly763), having the arginine residue adjacent to the proteolytic cleavage site (arg-ser-lys-arg) replaced by glycine, revealed that provWFgly763 is not processed by the fur gene product. We conclude that in higher eukaryotes, furin is the prototype of a subtilisin-like class of proprotein processing enzymes with substrate specificity for paired basic residues.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 76 (1999), S. 139-155 
    ISSN: 1572-9699
    Keywords: cell envelope ; cell surface ; domains ; lactic acid bacteria ; proteinase ; subtilase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The multi-domain, cell-envelope proteinases encoded by the genes prtB of Lactobacillus delbrueckii subsp. bulgaricus, prtH of Lactobacillus helveticus, prtP of Lactococcus lactis, scpA of Streptococcus pyogenes and csp of Streptococcus agalactiae have been compared using multiple sequence alignment, secondary structure prediction and database homology searching methods. This comparative analysis has led to the prediction of a number of different domains in these cell-envelope proteinases, and their homology, characteristics and putative function are described. These domains include, starting from the N-terminus, a pre-pro-domain for secretion and activation, a serine protease domain (with a smaller inserted domain), two large middle domains A and B of unknown but possibly regulatory function, a helical spacer domain, a hydrophilic cell-wall spacer or attachment domain, and a cell-wall anchor domain. Not all domains are present in each cell-envelope proteinase, suggesting that these multi-domain proteins are the result of gene shuffling and domain swapping during evolution.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-9699
    Keywords: protein engineering ; lantibiotics ; expression systems ; nisin ; epidermin ; Pep5
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Whereas protein engineering of enzymes and structural proteins nowadays is an established research tool for studying structure-function relationships of polypeptides and for improving their properties, the engineering of posttranslationally modified peptides, such as the lantibiotics, is just coming of age. The engineering of lantibiotics is less straightforward than that of unmodified proteins, since expression systems should be developed not only for the structural genes but also for the genes encoding the biosynthetic enzymes, immunity protein and regulatory proteins. Moreover, correct posttranslational modification of specific residues could in many cases be a prerequisite for production and secretion of the active lantibiotic, which limits the number of successful mutations one can apply. This paper describes the development of expression systems for the structural lantibiotic genes for nisin A, nisin Z, gallidermin, epidermin and Pep5, and gives examples of recently produced site-directed mutants of these lantibiotics. Characterization of the mutants yielded valuable information on biosynthetic requirements for production. Moreover, regions in the lantibiotics were identified that are of crucial importance for antimicrobial activity. Eventually, this knowledge will lead to the rational design of lantibiotics optimally suited for fighting specific undesirable microorganisms. The mutants are of additional value for studies directed towards the elucidation of the mode of action of lantibiotics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 69 (1996), S. 171-184 
    ISSN: 1572-9699
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lantibiotics form a group of modified peptides with unique structures, containing post-translationally modified amino acids such as dehydrated and lanthionine residues. In the gram-positive bacteria that secrete these lantibiotics, the gene clusters flanking the structural genes for various linear (type A) lantibiotics have recently been characterized. The best studied representatives are those of nisin (nis), subtilin (spa), epidermin (epi), Pep5 (pep), cytolysin (cyl), lactocin S (las) and lacticin 481 (lct). Comparison of the lantibiotic gene clusters shows that they contain conserved genes that probably encode similar functions. The nis, spa, epi and pep clusters contain lanB and lanC genes that are presumed to code for two types of enzymes that have been implicated in the modification reactions characteristic of all lantibiotics, i.e. dehydration and thio-ether ring formation. The cyl, las and lct gene clusters have no homologue of the lanB gene, but they do contain a much larger lanM gene that is the lanC gene homologue. Most lantibiotic gene clusters contain a lanP gene encoding a serine protease that is presumably involved in the proteolytic processing of the prelantibiotics. All clusters contain a lanT gene encoding and ABC transporter likely to be involved in the export of (precursors of) the lantibiotics. The lanE, lanF and lanG genes in the nis, spa and epi clusters encode another transport system that is possibly involved in self-protection. In the nisin and subtilin gene clusters two tandem genes, lanR and lanK, have been located that code for a two-component regulatory system. Finally, non-homologous genes are found in some lantibiotic gene clusters. The nisl and spal genes encode lipoproteins that are involved in immunity, the pepI gene encodes a membrane-located immunity protein, and epiD encodes an enzyme involved in a post-translational modification found only in the C-terminus of epidermin. Several genes of unknown function are also found in the las gene cluster. A database has been assembled for all putative gene products of type A lantibiotic gene clusters. Database searches, multiple sequence alignment and secondary structure prediction have been used to identify conserved sequence segments in the LanB, LanC, LanE, LanF, LanG, LanK, LanM, LanP, LanR and LanT gene products that may be essential for structure and function. This database allows for a rapid screening of newly determined sequences in lantibiotic gene clusters.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...