GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Continental margins. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (442 pages)
    Edition: 1st ed.
    ISBN: 9781118311189
    Series Statement: International Association of Sedimentologists Series ; v.109
    DDC: 551.3/03
    Language: English
    Note: Sediments, Morphology and Sedimentary Processes on Continental Shelves: Advances in Technologies, Research and Applications -- Contents -- Preface -- Part 1: Sediments and morphology in shelf and coastal systems -- Optimal use of multibeam technology in the study of shelf morphodynamics -- Palaeogeographic reconstruction of Hecate Strait British Columbia: changing sea levels and sedimentary processes reshape a glaciated shelf -- Changes in submarine channel morphology and slope sedimentation patterns from repeat multibeam surveys in the Fraser River delta, western Canada -- Recent sedimentary processes in the Cap de Creus canyon head and adjacent continental shelf, NE Spain: evidence from multibeam bathymetry, sub-bottom profiles and coring -- Geology metrics for predicting shoreline change using seabed and sub-bottom observations from the surf zone and nearshore -- Re-examination of sand ridges on the middle and outer New Jersey shelf based on combined analysis of multibeam bathymetry and backscatter, seafloor grab samples and chirp seismic data -- Sedimentary facies of shoreface-connected sand ridges off the East Frisian barrier-island coast, southern North Sea: climatic controls and preservation potential -- Part 2: Sediment transport processes, sedimentation and modelling -- Recent advances in understanding continental shelf sediment transport -- Recent advances in instrumentation used to study sediment transport -- Seabed disturbance and bedform distribution and mobility on the storm-dominated Sable Island Bank, Scotian Shelf -- Temporal variability, migration rates and preservation potential of subaqueous dune fields generated in the Agulhas Current on the southeast African continental shelf -- Measurement of bedload transport in a coastal sea using repeat swath bathymetry surveys: assessing bedload formulae using sand dune migration. , Analyzing bedforms mapped using multibeam sonar to determine regional bedload sediment transport patterns in the San Francisco Bay coastal system -- Sediment transport on continental shelves: storm bed formation and preservation in heterogeneous sediments -- Tidal influence on the transport of suspended matter in the southwestern Yellow Sea at 6 ka -- Origin, transport processes and distribution pattern of modern sediments in the Yellow Sea -- Seasonal and spatial variation in suspended sediment characteristics off the Changjiang estuary -- Factors controlling downward fluxes of particulate matter in glacier-contact and non-glacier contact settings in a subpolar fjord (Billefjorden, Svalbard) -- Part 3: Application and management -- On seabed disturbance, marine ecological succession and applications for environmental management: a physical sedimentological perspective -- Benthic habitat mapping from seabed acoustic surveys: do implicit assumptions hold? -- List of Reviewers -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Sedimentary Geology 202 (2007): 402-408, doi:10.1016/j.sedgeo.2007.03.020.
    Description: For more than a century, studies of sedimentology and sediment transport have measured bed-sediment grain size by collecting samples and transporting them back to the laboratory for grain-size analysis. This process is slow and expensive. Moreover, most sampling systems are not selective enough to sample only the surficial grains that interact with the flow; samples typically include sediment from at least a few centimeters beneath the bed surface. New hardware and software are available for in situ measurement of grain size. The new technology permits rapid measurement of surficial bed sediment. Here we describe several systems we have deployed by boat, by hand, and by tripod in rivers, oceans, and on beaches.
    Keywords: Underwater microscope ; Bed sediment ; Grain size ; In situ measurement ; Colorado River ; Adriatic Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C06014, doi:10.1029/2003JC001814.
    Description: Hydrodynamic roughness is a critical parameter for characterizing bottom drag in boundary layers, and it varies both spatially and temporally due to variation in grain size, bedforms, and saltating sediment. In this paper we investigate temporal variability in hydrodynamic roughness using velocity profiles in the bottom boundary layer measured with a high-resolution acoustic Doppler profiler (PCADP). The data were collected on the ebb-tidal delta off Grays Harbor, Washington, in a mean water depth of 9 m. Significant wave height ranged from 0.5 to 3 m. Bottom roughness has rarely been determined from hydrodynamic measurements under conditions such as these, where energetic waves and medium-to-fine sand produce small bedforms. Friction velocity due to current u *c and apparent bottom roughness z 0a were determined from the PCADP burst mean velocity profiles using the law of the wall. Bottom roughness k B was estimated by applying the Grant-Madsen model for wave-current interaction iteratively until the model u *c converged with values determined from the data. The resulting k B values ranged over 3 orders of magnitude (10−1 to 10−4 m) and varied inversely with wave orbital diameter. This range of k B influences predicted bottom shear stress considerably, suggesting that the use of time-varying bottom roughness could significantly improve the accuracy of sediment transport models. Bedform height was estimated from k B and is consistent with both ripple heights predicted by empirical models and bedforms in sonar images collected during the experiment.
    Keywords: Bottom boundary layer ; Hydrodynamic roughness ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C11S03, doi:10.1029/2006JC003868.
    Description: Sediment dispersal in the Adriatic Sea was evaluated using coupled three-dimensional circulation and sediment transport models, representing conditions from autumn 2002 through spring 2003. The calculations accounted for fluvial sources, resuspension by waves and currents, and suspended transport. Sediment fluxes peaked during southwestward Bora wind conditions that produced energetic waves and strengthened the Western Adriatic Coastal Current. Transport along the western Adriatic continental shelf was nearly always to the south, except during brief periods when northward Sirocco winds reduced the coastal current. Much of the modeled fluvial sediment deposition was near river mouths, such as the Po subaqueous delta. Nearly all Po sediment remained in the northern Adriatic. Material from rivers that drain the Apennine Mountains traveled farther before deposition than Po sediment, because it was modeled with a lower settling velocity. Fluvial sediment delivered to areas with high average bed shear stress was more highly dispersed than material delivered to more quiescent areas. Modeled depositional patterns were similar to observed patterns that have developed over longer timescales. Specifically, modeled Po sediment accumulation was thickest near the river mouth with a very thin deposit extending to the northeast, consistent with patterns of modern sediment texture in the northern Adriatic. Sediment resuspended from the bed and delivered by Apennine Rivers was preferentially deposited on the northern side of the Gargano Peninsula, in the location of thick Holocene accumulation. Deposition here was highest during Bora winds when convergences in current velocities and off-shelf flux enhanced delivery of material to the midshelf.
    Description: The authors are grateful for funding and support from the Office of Naval Research’s Coastal Geosciences and Marine Modeling programs, the U.S. Geological Survey, and NATO’s SACLANT-CEN.
    Keywords: Sediment ; Numerical model ; Adriatic Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Continental Shelf Research 52 (2013): 73-86, doi:10.1016/j.csr.2012.10.012.
    Description: Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Middle Atlantic Bight (MAB), off the U.S. East Coast, and identified a tidally-dominated shallow region with relatively high stress southeast of Massachusetts over Nantucket Shoals, where sediment mobility thresholds are exceeded over 50% of the time; a coastal band extending offshore to about 30 m water depth dominated by waves, where mobility occurs more than 20% of the time; and a quiescent low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the “Mud Patch”. The regional high in stress and mobility over Nantucket Shoals supports the hypothesis that fine grain sediment winnowed away in this region maintains the Mud Patch to the southwest. The analysis identified waves as the driving mechanism for stress throughout most of the MAB, excluding Nantucket Shoals and sheltered coastal bays where tides dominate; however, the relative dominance of low-frequency events varied regionally, and increased southward toward Cape Hatteras. The correlation between wave stress and local wind stress was lowest in the central MAB, indicating a relatively high contribution of swell to bottom stress in this area, rather than locally generated waves. Accurate prediction of the wave energy spectrum was critical to produce good estimates of bottom shear stress, which was sensitive to energy in the long period waves.
    Description: P.S. Dalyander was supported by the U.S. Geological Survey Mendenhall Research Fellowship Program.
    Keywords: Bottom stress ; Wave stress ; Current stress ; Sea floor disturbance ; Middle Atlantic Bight
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Journal of Atmospheric and Oceanic Technology 21 (2004): 1448–1461, doi:10.1175/1520-0426(2004)021〈1448:AOAPAD〉2.0.CO;2.
    Description: The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s−1 and currents up to 40 cm s−1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is −0.4 cm s−1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s−1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s−1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s−1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ≥ 50 cm s−1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ≥ 5 cm s−1 have a correlation coefficient R2 〉 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.
    Description: This work was funded by the U.S. Geological Survey as part of the Southwest Washington Coastal Erosion Study
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Marine Science and Engineering 2 (2014): 413-436, doi:10.3390/jmse2020413.
    Description: The Community Sediment Transport Modeling System (CSTMS) cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1) describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2) compare calculations to observations, and (3) investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV) field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.
    Description: Funding by the National Science Foundation (OCE-1061781 and OCE-0536572) supported Fall, Harris, Friedrichs, and Rinehimer.
    Keywords: Cohesive sediment ; Critical stress ; Sediment transport modeling ; Erodibility ; Settling velocity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geoscientific Model Development 11 (2018): 1849-1871, doi:10.5194/gmd-11-1849-2018.
    Description: We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6), as implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST Subversion repository revision 1234). These include the following: floc dynamics (aggregation and disaggregation in the water column); changes in floc characteristics in the seabed; erosion and deposition of cohesive and mixed (combination of cohesive and non-cohesive) sediment; and biodiffusive mixing of bed sediment. These routines supplement existing non-cohesive sediment modules, thereby increasing our ability to model fine-grained and mixed-sediment environments. Additionally, we describe changes to the sediment bed layering scheme that improve the fidelity of the modeled stratigraphic record. Finally, we provide examples of these modules implemented in idealized test cases and a realistic application.
    Description: This work was supported by the US Geological Survey, Coastal and Marine Geology Program and the National Ocean Partnership Program. Courtney K. Harris was supported by the NSF (OCE-1459708, OCE-1061781, and OCE-0536572).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 2494-2512, doi:10.1002/2017JC013252.
    Description: Direct covariance observations of the mean flow Reynolds stress and sonar images of the seafloor collected on a wave‐exposed inner continental shelf demonstrate that the drag exerted by the seabed on the overlying flow is consistent with boundary layer models for wave‐current interaction, provided that the orientation and anisotropy of the bed roughness are appropriately quantified. Large spatial and temporal variations in drag result from nonequilibrium ripple dynamics, ripple anisotropy, and the orientation of the ripples relative to the current. At a location in coarse sand characterized by large two‐dimensional orbital ripples, the observed drag shows a strong dependence on the relative orientation of the mean current to the ripple crests. At a contrasting location in fine sand, where more isotropic sub‐orbital ripples are observed, the sensitivity of the current to the orientation of the ripples is reduced. Further, at the coarse site under conditions when the currents are parallel to the ripple crests and the wave orbital diameter is smaller than the wavelength of the relic orbital ripples, the flow becomes hydraulically smooth. This transition is not observed at the fine site, where the observed wave orbital diameter is always greater than the wavelength of the observed sub‐orbital ripples. Paradoxically, the dominant along‐shelf flows often experience lower drag at the coarse site than at the fine site, despite the larger ripples, highlighting the complex dynamics controlling drag in wave‐exposed environments with heterogeneous roughness.
    Description: National Science Foundation Ocean Sciences Division Award Grant Number: 1356060; U.S. Geological Survey Coastal and Marine Geology Program
    Description: 2018-09-26
    Keywords: Reynolds stress ; Drag ; Ripples
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 69 (2008): 154-161, doi:10.1016/j.jmarsys.2007.02.013.
    Description: In MREA and many other marine applications, it is common to have multiple models running with different grids, run by different institutions. Techniques and tools are described for low-bandwidth delivery of data from large multidimensional data sets, such as those from meteorological and oceanographic models, directly into generic analysis and visualization tools. Output is stored using the NetCDF CF Metadata Conventions, and then delivered to collaborators over the web via OPeNDAP. OPeNDAP datasets served by different institutions are then organized via THREDDS catalogs. Tools and procedures are then used which enable scientists to explore data on the original model grids using tools they are familiar with. It is also low-bandwidth, enabling users to extract just the data they require, an important feature for access from ship or remote areas. The entire implementation is simple enough to be handled by modelers working with their webmasters – no advanced programming support is necessary.
    Description: S. Carniel was partially supported by the Office of Naval Research (ONR grant number N00014-05-1-0730). I. Janekovic was supported by the Croatian Ministry of Science, Education and Sport (grant number 0098113).
    Keywords: Data collections ; Information systems ; Modelling ; Adriatic Sea
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...