GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 72 (1950), S. 4814-4815 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Biological Mass Spectrometry 5 (1978), S. 641-646 
    ISSN: 0306-042X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The hydrogen and isobutane chemical ionization mass spectra of a number of carotenoids, with symmetrical and unsymmetrical end groups, have been examined. Similar spectra were obtained with each gas. Loss of fragments, characteristic of both the polyene chain and of the end groups were shown by all compounds. Contrasting with the electron ionization spectra the chemical ionization spectra showed more abundant ions in the high mass region and a simpler fragmentation pattern. However, the diagnostic features of the [M - 92]+/[M - 106]+ ratio, established for electron ionization spectra, are retained. A unique fragmentation pattern is shown by the keto derivative, capsanthin, with consecutive losses of xylene and toluene from the [M + 1]+ ion. Attention is drawn to the significantly superior sensitivity of the chemical ionization technique over that of the electron ionization procedure. Use of the chemical ionization technique for the identification and structural examination of carotenoids thus offers advantages over the electron ionization and field desorption techniques.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Biological Mass Spectrometry 14 (1979), S. 58-58 
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Skeletal rearrangements are reported of protonated molecular ions in the chemical ionization mass spectra of allyl cyclohexyl ether, benzyl cyclohexyl ether, t-butyl cyclohexyl ether and dibenzyl ether.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Biological Mass Spectrometry 14 (1979), S. 379-386 
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The electron impact and chemical ionization mass spectra of a series of N,N′, -diaryl ureas have been compared. The electron impact mass spectra indicate rearrangements leading to two pairs of aromatic amines and isocyanates, either as ions or molecules. The chemical ionization mass spectra showed the formation of protonated amines and isocyanates via rearrangement.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Biological Mass Spectrometry 18 (1983), S. 183-192 
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Rearrangements reported in the literature for positive ions formed by chemical ionization are briefly reviewed, with particular emphasis on illustrative examples of hydrogen and skeletal rearrangements.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Biological Mass Spectrometry 22 (1987), S. 30-35 
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The skeletal rearrangement for water loss is the dominant ion reaction in the chemical ionization mass spectrum of benzyl 2-phenylethyl ether. Isotopic distributions obtained for this reaction with specifically labelled derivatives have been interpreted in terms of competing five- and six-centred skeletal rearrangements. Chemical substitution of the alternative aromatic rings strongly influences the balance of the competition.
    Additional Material: 6 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Biological Mass Spectrometry 13 (1978), S. 188-191 
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Metal(I) hydrides are eliminated as neutral species in the electron impact ionization mass spectra of copper(II) and palladium(II) complexes of ethylene-N,N′-3-benzoylprop-2-en-2-amine. Deuterium labelling shows that the hydrogen atom of the metal(I) hydride is derived predominantly from the ethylene bridge both for ion source reactions and for metastable ion transitions. Evidence supporting the proposed rationalization for elimination of metal(I) hydride is provided by the observation of an analogous reaction in the mass spectrum of (ethylene-N,N′-salicylaldiminato)copper(II). The mass spectrum of ethylene-d4-N,N′-3-benzoylprop-2-en-2-amine shows an unusual rearrangement to give [C7H5D2]+ ions involving a formal phenyl-to-methylene transfer.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Deuterium labelling studies indicate that loss of water from the protonated molecular ion of cyclohexanone involves competitive site-specific eliminations. Loss of alcohol from the protonated molecular ions of 4-alkoxycyclohexanones involves competition between a direct cleavage, a 1,3-hydrogen rearrangement and consecutive losses of alkene and water.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Biological Mass Spectrometry 16 (1981), S. 428-440 
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Protonated molecular ions of dibenzyl ether, formed by chemical ionization using hydrogen and isobutane as reagent gases, undergo skeletal rearrangements to lose water and formaldehyde, both in the ion source and the flight path. The rearrangements have been elucidated by deuterium labelling and chemical substitution. The water lost contains the reagent proton and an aromatic hydrogen atom, and the aromatic hydrogen atoms have been shown to be mobile prior to the reaction. It is proposed that the skeletal rearrangement for water loss is initiated by protonation on the ether oxygen atom, followed by benzyl migration. The formaldehyde lost contains benzylic hydrogen atoms exclusively, and it is proposed that the skeletal rearrangement is preceded by hydrogen rearrangement of an oxygen protonated molecular ion to a ring protonated molecular ion. Daughter ion structures are supported by comparisons of their collision induced dissociation spectra with those of isomeric ions prepared by alternative routes.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Biological Mass Spectrometry 24 (1989), S. 615-619 
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Isotopic labelling and chemical substitution support the proposition that the skeletal rearrangement for water loss from molecular protonated ions of t-butoxycyclohexane involves competition between three reaction pathways. The principal reaction pathway (83%) involves migration of the t-butyl group to the 2-(6-) position of the cyclohexyl ring with reciprocal hydrogen transfer. A second reaction pathway (12%) involves ring contraction followed by reciprocal exchange of the t-butyl group with the 2-(5-) hydrogen atom of the nascent cyclopentyl ring. The third reaction pathway (5%) involves rearrangement of a proton-bound complex to permit ipso attack by isobutene. Stereospecific substitutions indicate that the principal reaction pathway is susceptible to 1,3-diaxial interactions.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...