GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jordan, Thomas M; Williams, Christopher N; Schroeder, Dustin M; Martos, Yasmina M; Cooper, Michael A; Siegert, Martin J; Paden, John D; Huybrechts, Philippe; Bamber, Jonathan L (2018): A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes. The Cryosphere, 12(9), 2831-2854, https://doi.org/10.5194/tc-12-2831-2018
    Publication Date: 2023-01-13
    Description: There is widespread, but often indirect, evidence that a significant fraction of the bed beneath the Greenland Ice Sheet is thawed (at or above the pressure melting point for ice). This includes the beds of major outlet glaciers and their tributaries and a large area around the NorthGRIP borehole in the ice-sheet interior. The ice-sheet scale distribution of basal water is, however, poorly constrained by existing observations. In principle, airborne radio-echo sounding (RES) enables the detection of basal water from bed-echo reflectivity, but unambiguous mapping is limited by uncertainty in signal attenuation within the ice. Here we introduce a new, RES diagnostic for basal water that is associated with wet-dry transitions in bed material: bed-echo reflectivity variability. This technique acts as a form of edge detector and is a sufficient, but not necessary, criteria for basal water. However, the technique has the advantage of being attenuation-insensitive and suited to data combination enabling combined analysis of over a decade of Operation IceBridge survey data. The basal water predictions are compared with existing analyses of the basal thermal state (frozen and thawed beds) and geothermal heat flux. In addition to the outlet glaciers, we demonstrate widespread water storage in the northern and eastern interior. Notably, we observe a quasi-linear 'corridor' of basal water extending from NorthGRIP to Petermann glacier that spatially correlates with elevated heat flux predicted by a recent magnetic model. Finally, with a general aim to stimulate regional- and process-specific investigations, the basal water predictions are compared with bed topography, subglacial flow paths, and ice-sheet motion. The basal water distribution, and its relationship with the thermal state, provides a new constraint for numerical models.
    Keywords: DATE/TIME; File content; File format; File name; File size; Greenland; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 70 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-07
    Description: Radar sounding is a powerful geophysical approach for characterizing the subsurface conditions of terrestrial and planetary ice masses at local to global scales. As a result, a wide array of orbital, airborne, ground-based, and in situ instruments, platforms and data analysis approaches for radioglaciology have been developed, applied or proposed. Terrestrially, airborne radar sounding has been used in glaciology to observe ice thickness, basal topography and englacial layers for five decades. More recently, radar sounding data have also been exploited to estimate the extent and configuration of subglacial water, the geometry of subglacial bedforms and the subglacial and englacial thermal states of ice sheets. Planetary radar sounders have observed, or are planned to observe, the subsurfaces and near-surfaces of Mars, Earth's Moon, comets and the icy moons of Jupiter. In this review paper, and the thematic issue of the Annals of Glaciology on ‘Five decades of radioglaciology’ to which it belongs, we present recent advances in the fields of radar systems, missions, signal processing, data analysis, modeling and scientific interpretation. Our review presents progress in these fields since the last radio-glaciological Annals of Glaciology issue of 2014, the context of their history and future prospects.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-11
    Description: One of the key components of this research has been the mapping of Antarctic bed topography and ice thickness parameters that are crucial for modelling ice flow and hence for predicting future ice loss and the ensuing sea level rise. Supported by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action Group aims not only to produce new gridded maps of ice thickness and bed topography for the international scientific community, but also to standardize and make available all the geophysical survey data points used in producing the Bedmap gridded products. Here, we document the survey data used in the latest iteration, Bedmap3, incorporating and adding to all of the datasets previously used for Bedmap1 and Bedmap2, including ice bed, surface and thickness point data from all Antarctic geophysical campaigns since the 1950s. More specifically, we describe the processes used to standardize and make these and future surveys and gridded datasets accessible under the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles. With the goals of making the gridding process reproducible and allowing scientists to re-use the data freely for their own analysis, we introduce the new SCAR Bedmap Data Portal (https://bedmap.scar.org, last access: 1 March 2023) created to provide unprecedented open access to these important datasets through a web-map interface. We believe that this data release will be a valuable asset to Antarctic research and will greatly extend the life cycle of the data held within it. Data are available from the UK Polar Data Centre: https://data.bas.ac.uk (last access: 5 May 2023​​​​​​​). See the Data availability section for the complete list of datasets.
    Description: Published
    Description: 2695–2710
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Cambridge University Press (CUP)
    In:  EPIC3Annals of Glaciology, Cambridge University Press (CUP), 62(85-86), pp. 390-390, ISSN: 0260-3055
    Publication Date: 2024-03-14
    Description: In the text, the citation that reads "Felix and King, 2011"should read "Ng and King, 2011". Likewise, the reference that reads "Felix N and King EC (2011) Kinematic waves in polar firn stratigraphy. Journal of Glaciology 57(206), 1119–1134. doi: 10.3189/002214311798843340.” Should read “Ng F and King EC (2011) Kinematic waves in polar firn stratigraphy. Journal of Glaciology 57(206), 1119–1134. doi: 10.3189/002214311798843340".
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-29
    Description: One of the key components of this research has been the mapping of Antarctic bed topography and ice thickness parameters that are crucial for modelling ice flow and hence for predicting future ice loss and the ensuing sea level rise. Supported by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action Group aims not only to produce new gridded maps of ice thickness and bed topography for the international scientific community, but also to standardize and make available all the geophysical survey data points used in producing the Bedmap gridded products. Here, we document the survey data used in the latest iteration, Bedmap3, incorporating and adding to all of the datasets previously used for Bedmap1 and Bedmap2, including ice bed, surface and thickness point data from all Antarctic geophysical campaigns since the 1950s. More specifically, we describe the processes used to standardize and make these and future surveys and gridded datasets accessible under the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles. With the goals of making the gridding process reproducible and allowing scientists to re-use the data freely for their own analysis, we introduce the new SCAR Bedmap Data Portal (https://bedmap.scar.org, last access: 1 March 2023) created to provide unprecedented open access to these important datasets through a web-map interface. We believe that this data release will be a valuable asset to Antarctic research and will greatly extend the life cycle of the data held within it. Data are available from the UK Polar Data Centre: https://data.bas.ac.uk (last access: 5 May 2023). See the Data availability section for the complete list of datasets.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...