GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    In: Spektrum der Wissenschaft, Heidelberg : Spektrum-der-Wiss.-Verl.-Ges., 1978, (1995), 11, Seite 70-76, 0170-2971
    In: year:1995
    In: number:11
    In: pages:70-76
    Type of Medium: Article
    Pages: Ill
    ISSN: 0170-2971
    Language: Undetermined
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    College Station, Tex.
    Type of Medium: Book
    Pages: 32 S , Ill
    Series Statement: OOSDP background report 4
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 8 (1996), S. 2855-2867 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Oceanic observations [Atmos. Ocean 29, 340 (1991)] have revealed small-scale thermohaline plumes near the surface of a calm sea under warming conditions. The stratification was favorable for the double-diffusive salt finger instability, though a previously unreported up–down asymmetry was found in which narrow downward cells are balanced by a broader, weaker upwelling. The scales of the thermal structures are consistent with asymmetric hexagonal salt-finger modes [J. Phys. Oceanogr. 24, 855 (1994)], but no selection mechanism for the asymmetry has previously been identified. This paper explores the influence of nonlinear profiles of temperature and salinity, as might arise due to surface evaporation or warming, on the linear stability problem in a salt-fingering regime. Three models are considered. In the first, a sharp, nonlinear solute-concentration gradient is applied at the upper boundary, as might arise by surface evaporation. A Bénard mode appears, driven by the destabilizing density gradient in the thin boundary layer and influencing motion only within the boundary-layer thickness. In the second model, a weak salinity gradient is introduced below the boundary layer; double-diffusive bulk modes influence the motion across the entire fluid. Nonlinear interaction of the boundary layer and bulk modes provides a mechanism for maintaining salt fingers with up–down asymmetry. The third model contains a large temperature gradient at the surface, as might arise from warming by solar radiation, overlying a quasi-isothermal region above a region of moderate gradient. The largest-growth modes are found to be salt fingers that extend throughout the middle region and disappear in the top and bottom regions. This vertical structure is close to that of the asymmetric salt fingers described in Osborn [Atmos. Ocean 29, 340 (1991)]. The differing length scales of the regions impress an up–down asymmetry on plumes; this is expected to yield a hexagonal pattern at the onset. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 327 (1987), S. 47-49 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The new instrument is a free-fall profiler very similar in design to the Total Ocean Profiler (TOPS) of S. Hayes of the Pacific Marine Environmental Laboratory9. Data from acoustic current meters, accelerometers and magnetometers are used in a model of the profiler's dynamic response to generate ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU / Wiley
    Publication Date: 2023-07-11
    Description: he distribution of evaporation and precipitation over the ocean (its hydrologic cycle) is one of the least understood elements of the climate system. However, it is now considered one of the most important, especially for ocean circulation changes on decadal to millennial time-scales. The ocean covers 70% of the Earth's surface and contains nearly all (97%) of its free water, thus, it plays a dominant role in the global water cycle. The atmosphere only holds a few centimeters of liquid water, or 0.001% of the total. However, most discussions of the water cycle focus on the rather small component associated with terrestrial processes [Chahine, 1992]. This is understandable, since the water cycle is so vital to agriculture and all of man's activities. Yet current estimates indicate that 86% of global evaporation and 78% of global precipitation occurs over the oceans [Baumgartner and Reichel, 1975]; (Figure 1 ). Since the oceans are the source of most rainwater, it behooves us to work toward a better understanding of the ocean hydrologic cycle; small changes in ocean evaporation and precipitation patterns may have dramatic consequences for the much smaller terrestrial water cycle. For example, if less than 1% of the rain falling on the Atlantic Ocean were to be concentrated in the central US, it would double the discharge of the Mississippi river!
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2005. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 63 (2005): 263-289, doi:10.1357/0022240053693842.
    Description: A large tank capable of long-term maintenance of a sharp temperature-salinity interface has been developed and applied to measurements of the dynamical response of oceanographic sensors. A two-layer salt-stratified system is heated from below and cooled from above to provide two convectively mixed layers with a thin double-diffusive interface separating them. A temperature jump exceeding 10°C can be maintained over 1–2 cm (a vertical temperature gradient of order 103°C/m) for several weeks. A variable speed-lowering system allows testing of the dynamic response of conductivity and temperature sensors in full-size oceanographic instruments. An acoustic echo sounder and shadowgraph system provide nondisruptive monitoring of the interface and layer microstructure. Tests of several sensor systems show how data from the facility is used to determine sensor response times using several fitting techniques and the speed dependence of thermometer time constants is illustrated. The linearity of the conductivity–temperature relationship across the interface is proposed as a figure of merit for design of lag-correction filters to accurately match temperature and conductivity sensors for the computation of salinity. The effects of finite interface thickness, slow sensor sampling rates and the thermal mass of the conductivity cell are treated. Sensor response characterization is especially important for autonomous instruments where data processing and compression must be performed in-situ, but is also helpful in the development of new sensors and in assuring accurate salinity records from traditional wire-lowered and towed systems.
    Description: This research was supported by the National Science Foundation, grants OCE-97-11869 and OCE-02-40956, NOAA CORC grant 154368 and a WHOI Mellon Technical Staff Award.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 5410196 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 31 (2004): L23311, doi:10.1029/2004GL021325.
    Description: Results from the first joint temperature and seismic reflection study of the ocean demonstrate that water mass boundaries can be acoustically mapped. Multichannel seismic profiles collected in the Norwegian Sea show reflections between the Norwegian Atlantic Current and Norwegian Sea Deep Water. The images were corroborated with a dense array of expendable bathythermographs and expendable conductivity-temperature depth profiles delineating sharp temperature gradients over vertical distances of ∼5–15 m at depths over which reflections occur. Fine structure from both thermohaline intrusions and internal wave strains is imaged. Low-amplitude acoustic reflections correspond to temperature changes as small as 0.03°C implying that seismic reflection methods can image even weak fine structure.
    Description: Supported by NSF grants OCE-0221366 and OCE-0337289 to Holbrook.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 37 (2010): L01606, doi:10.1029/2009GL041601.
    Description: Moored current observations in the southwestern East/Japan Sea of 16.5 months duration clearly captured two episodes of downward phase propagation (upward energy propagation) of near-inertial waves (NIWs). Time series of temperature and velocity from the mooring and ancillary information indicate that the mooring was located near the center of an anticyclonic eddy during these events. Considering the typical vertical structure of quasi-permanent eddy features in the region, the observed downward phase propagation appeared to occur within the seasonal thermocline and upper thermostad of the anticyclonic mesoscale eddy. Ray tracing simulation of NIW using the observed subinertial currents suggests that the upward energy propagation is caused by the reflection of the NIWs within the thermostad of the anticyclonic eddy, where the effect of the vertical shear of subinertial horizontal currents is larger than the buoyancy effect in controlling the propagation of NIWs.
    Description: This work was supported by grants from the Ministry of Land, Transport, and Maritime Affairs (Ocean Climate Variability Program), and the US NSF, grant OCE-0647949 to RWS.
    Keywords: Near-inertial waves ; Mesoscale eddy ; Wave reflection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Sears Foundation for Marine Research
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2011. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 69 (2011): 779-795, doi:10.1357/002224011799849471.
    Description: New experimental results on haline convection show a surprising preference for narrow fingers over large-scale convection when even a small stabilizing temperature gradient is present (Hage and Tilgner, 2010). This regime has heat/salt density ratios below one, a parameter range that has not been explored in traditional salt finger theory. Here the properties of the exact (long finger) solutions of Schmitt (1979, 1983) are explored at low density ratios. It is found that narrow finger solutions are indeed obtained and remain the fastest growing in some circumstances, though the selective advantage of the “Stern scale“ can disappear as the density ratio decreases. The variation of solutions with Prandtl number and the relation to the Stern (1975) approximate solution are examined and discussed.
    Description: The financial support of NASA for this work under grant NNX10AE19G is also gratefully acknowledged.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 30 (2013): 1767–1788, doi:10.1175/JTECH-D-12-00140.1.
    Description: Seismic images of oceanic thermohaline finestructure record vertical displacements from internal waves and turbulence over large sections at unprecedented horizontal resolution. Where reflections follow isopycnals, their displacements can be used to estimate levels of turbulence dissipation, by applying the Klymak–Moum slope spectrum method. However, many issues must be considered when using seismic images for estimating turbulence dissipation, especially sources of random and harmonic noise. This study examines the utility of seismic images for estimating turbulence dissipation in the ocean, using synthetic modeling and data from two field surveys, from the South China Sea and the eastern Pacific Ocean, including the first comparison of turbulence estimates from seismic images and from vertical shear. Realistic synthetic models that mimic the spectral characteristics of internal waves and turbulence show that reflector slope spectra accurately reproduce isopycnal slope spectra out to horizontal wavenumbers of 0.04 cpm, corresponding to horizontal wavelengths of 25 m. Using seismic reflector slope spectra requires recognition and suppression of shot-generated harmonic noise and restriction of data to frequency bands with signal-to-noise ratios greater than about 4. Calculation of slope spectra directly from Fourier transforms of the seismic data is necessary to determine the suitability of a particular dataset to turbulence estimation from reflector slope spectra. Turbulence dissipation estimated from seismic reflector displacements compares well to those from 10-m shear determined by coincident expendable current profiler (XCP) data, demonstrating that seismic images can produce reliable estimates of turbulence dissipation in the ocean, provided that random noise is minimal and harmonic noise is removed.
    Description: This work was funded by NSF Grants 0452744, 0405654, and 0648620, and ONR/DEPSCoR Grant DODONR40027.
    Description: 2014-02-01
    Keywords: Mixing ; Thermocline ; Acoustic measurements/effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...