GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Pleistozän ; Paläoklima ; Modell ; Simulation
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (18 Seiten, 1,49 MB) , Diagramme
    Language: German , English
    Note: Förderkennzeichen BMBF 01LP1915C , Verbundnummer 01195150 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Literaturverzeichnis: Seite 15-16 , Sprache der Kurzfassungen: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-07
    Description: A realistic simulation of the surface mass balance (SMB) is essential for simulating past and future ice-sheet changes. As most state-of-the-art Earth system models (ESMs) are not capable of realistically representing processes determining the SMB, most studies of the SMB are limited to observations and regional climate models and cover the last century and near future only. Using transient simulations with the Max Planck Institute ESM in combination with an energy balance model (EBM), we extend previous research and study changes in the SMB and equilibrium line altitude (ELA) for the Northern Hemisphere ice sheets throughout the last deglaciation. The EBM is used to calculate and downscale the SMB onto a higher spatial resolution than the native ESM grid and allows for the resolution of SMB variations due to topographic gradients not resolved by the ESM. An evaluation for historical climate conditions (1980–2010) shows that derived SMBs compare well with SMBs from regional modeling. Throughout the deglaciation, changes in insolation dominate the Greenland SMB. The increase in insolation and associated warming early in the deglaciation result in an ELA and SMB increase. The SMB increase is caused by compensating effects of melt and accumulation: the warming of the atmosphere leads to an increase in melt at low elevations along the ice-sheet margins, while it results in an increase in accumulation at higher levels as a warmer atmosphere precipitates more. After 13 ka, the increase in melt begins to dominate, and the SMB decreases. The decline in Northern Hemisphere summer insolation after 9 ka leads to an increasing SMB and decreasing ELA. Superimposed on these long-term changes are centennial-scale episodes of abrupt SMB and ELA decreases related to slowdowns of the Atlantic meridional overturning circulation (AMOC) that lead to a cooling over most of the Northern Hemisphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-08
    Description: Ice shelves surrounding the Antarctic perimeter moderate ice discharge towards the ocean through buttressing. Ice-shelf evolution and integrity depend on the local surface accumulation, basal melting and on the spatially variable ice-shelf viscosity. These components of ice-shelf mass balance are often poorly constrained by observations and introduce uncertainties in ice-sheet projections. Isochronal radar stratigraphy is an observational archive for the atmospheric, oceanographic and ice-flow history of ice shelves. Here, we predict the stratigraphy of locally accumulated ice on ice shelves with a kinematic forward model for a given atmospheric and oceanographic scenario. This delineates the boundary between local meteoric ice (LMI) and continental meteoric ice (CMI). A large LMI to CMI ratio hereby marks ice shelves whose buttressing strength is more sensitive to changes in atmospheric precipitation patterns. A mismatch between the steady-state predictions of the kinematic forward model and observations from radar can highlight inconsistencies in the atmospheric and oceanographic input data or be an indicator for a transient ice-shelf history not accounted for in the model. We discuss pitfalls in numerical diffusion when calculating the age field and validate the kinematic model with the full Stokes ice-flow model Elmer/Ice. The Roi Baudouin Ice Shelf (East Antarctica) serves as a test case for this approach. There, we find a significant east–west gradient in the LMI / CMI ratio. The steady-state predictions concur with observations on larger spatial scales (〉10 km), but deviations on smaller scales are significant, e.g., because local surface accumulation patterns near the grounding zone are underestimated in Antarctic-wide estimates. Future studies can use these mismatches to optimize the input data or to pinpoint transient signatures in the ice-shelf history using the ever growing archive of radar observations of internal ice stratigraphy.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-08
    Description: Ice rises and ice rumples are locally grounded features found in coastal Antarctica and are surrounded by otherwise freely floating ice shelves. An ice rise has an independent flow regime, whereas the flow regime of an ice rumple conforms to that of the ice shelf and merely slows the flow of ice. In both cases, local highs in the bathymetry are in contact with the ice shelf from below, thereby regulating the large-scale ice flow, with implications for the upstream continental grounding line position. This buttressing effect, paired with the suitability of ice rises as a climate archive, necessitates a better understanding of the transition between ice rise and ice rumple, their evolution in response to a change in sea level, and their dynamic interaction with the surrounding ice shelf. We investigate this behaviour using a three-dimensional full Stokes ice flow model with idealised ice rises and ice rumples. The simulations span end-member basal friction scenarios of almost stagnant and fully sliding ice at the ice–bed interface. We analyse the coupling with the surrounding ice shelf by comparing the deviations between the non-local full Stokes surface velocities and the local shallow ice approximation (SIA). Deviations are generally high at the ice divides and small on the lee sides. On the stoss side, where ice rise and ice shelf have opposing flow directions, deviations can be significant. Differences are negligible in the absence of basal sliding where the corresponding steady-state ice rise is larger and develops a fully independent flow regime that is well described by SIA. When sea level is increased, and a transition from ice rise to ice rumple is approached, the divide migration is more abrupt the higher the basal friction. In each scenario, the transition occurs after the stoss-side grounding line has moved over the bed high and is positioned on a retrograde slope. We identify a hysteretic response of ice rises and ice rumples to changes in sea level, with grounded area being larger in a sea-level-increase scenario than in a sea-level-decrease scenario. This hysteresis shows not only irreversibility following an equal increase and subsequent decrease in sea level but also that the perturbation history is important when the ice rise or ice rumple geometry is not known. The initial grounded area needs to be carefully considered, as this will determine the formation of either an ice rise or an ice rumple, thereby causing different buttressing effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Heinrich-type ice-sheet surges are one of the prominent signals of glacial climate variability. They are characterised as abrupt, quasi-periodic episodes of ice-sheet instabilities during which large numbers of icebergs are released from the Laurentide ice sheet. The mechanisms controlling the timing and occurrence of Heinrich-type ice-sheet surges remain poorly constrained to this day. Here, we use a coupled ice sheet–solid Earth model to identify and quantify the importance of boundary forcing for the surge cycle length of Heinrich-type ice-sheet surges for two prominent ice streams of the Laurentide ice sheet – the land-terminating Mackenzie ice stream and the marine-terminating Hudson ice stream. Both ice streams show responses of similar magnitude to surface mass balance and geothermal heat flux perturbations, but Mackenzie ice stream is more sensitive to ice surface temperature perturbations, a fact likely caused by the warmer climate in this region. Ocean and sea-level forcing as well as different frequencies of the same forcing have a negligible effect on the surge cycle length. The simulations also highlight the fact that only a certain parameter space exists under which ice-sheet oscillations can be maintained. Transitioning from an oscillatory state to a persistent ice streaming state can result in an ice volume loss of up to 30 % for the respective ice stream drainage basin under otherwise constant climate conditions. We show that Mackenzie ice stream is susceptible to undergoing such a transition in response to all tested positive climate perturbations. This underlines the potential of the Mackenzie region to have contributed to prominent abrupt climate change events of the last deglaciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The last deglaciation was characterized by drastic climate changes, most prominently melting ice sheets. Melting ice sheets have a significant impact on the atmospheric and oceanic circulation, due to changes in the topography and meltwater release into the ocean. In a set of transient simulations of the last deglaciation with the Max Planck Institute for Meteorology Earth System Model we explore differences in the climate response that arise from different boundary conditions and implementations suggested within the Paleoclimate Modeling Intercomparison Project - Phase 4 (PMIP4) deglaciation protocol. The underlying ice-sheet reconstruction dominates the simulated deglacial millennial-scale climate variability in terms of timing and occurrence of observed climate events. Sensitivity experiments indicate that the location and timing of meltwater release from the ice sheets into the ocean are crucial for the ocean response. The results will allow a better interpretation of inter-model differences that arise from different implementations proposed within the PMIP4 protocol.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-28
    Description: The evolution of the northern hemispheric climate during the last glacial period was beset by quasi-episodic iceberg discharge events from the Laurentide ice sheet, known as Heinrich events (HEs). The paleo record places most HEs into the cold stadial of the Dansgaard-Oeschger cycle. However, not every Dansgaard-Oeschger cycle is associated with a HE, revealing a complex interplay between the two modes of glacial variability. Here, using a coupled ice sheet-solid earth model, we introduce a mechanism that explains the synchronicity of HEs and Dansgaard-Oeschger cycles. Unlike earlier studies, our mechanism does not require a trigger during the stadial. Instead, the atmospheric warming signal during the interstadial of the Dansgaard-Oeschger cycle causes enhanced ice stream thickening that leads to the HE during the late interstadial. We demonstrate that this mechanism reproduces the key HE characteristics and provides an explanation for synchronous HEs from different regions of the Laurentide ice sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-21
    Description: The floating ice shelves surrounding the Antarctic Ice Sheet are the interface for interactions between ice and ocean. A plethora of previous studies has highlighted the role of ice shelves for stabilizing ice sheets. Quantification of melting at the ice-shelf base is imperative for quantifying ice-shelf stability, and also to test the coupling of upcoming ice-ocean models. Today, the basal mass balance is either inferred from mass conservation or measured using phase-sensitive radars. The former has good spatial coverage, but low spatial and virtually no temporal resolution. The latter is highly resolved in time, but with limited spatial coverage. Here we investigate a third approach exploiting the geometry of observed radar isochrones (dips, synclines, anticlines) which is a function of both ice deformation and the atmospheric/oceanographic history. By comparing isochrones with modeled age fields we can disentangle the different mechanisms and unravel the melt history. We solve the age equation on highly resolved ice-shelf geometries, and derive the required 3D velocities from surface velocities using a plug-flow approximation (and a first-order guess of basal melting from mass conservation). Validation with a full Stokes model shows that the plug-flow assumption holds well seawards of the grounding zone. We compile the radar isochrones for two Antarctic ice shelves from ground-based (i.e. Roi Baudouin Ice Self) and airborne (i.e. Ekstömisen) profiles. Our compilation includes ice-shelf channels, and we find a number of features in the isochrones geometry that indicate strong localized melting, but also anomalous snow accumulation in corresponding surface depressions. We can distinguish between both mechanisms using ourage model. This study shows the potential of using radar isochrones as a unique archive for ice-ocean interactions,and serves as a precursor for setting up the full inverse problem, allowing to infer the currently unknown oceanmelt history on decadal-centennial time scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-21
    Description: Antarctica is fringed by floating ice shelves through which more than 80% of the overall ice is discharged. These ice shelves provide the main interface between the Antarctic Ice Sheet and the surrounding ocean. Virtually all ice shelves are either laterally constrained by embayments or locally reground on topographic highs causing the formation of ice rises. In both cases the locally enhanced friction is transmitted upstream, resulting in a restraining force that decelerates ice discharge and controls rates of sea-level rise. As ice rises are typically on the order of ten sof kilometers in diameter, they are usually not resolved, both in the observations and the physical approximations,in large-scale ice-sheet models. In addition to their stabilising influence, ice rises also provide a proxy for stable ice-sheet condition in the past as they archive their own evolution in their stratigraphy, providing the opportunity to derive a Pan-Antarctic archive for the deglaciation history. To adequately simulate ice rise evolution, the full stress balance needs to be considered including the full coupling of ice sheet, ice shelf, and ice rise. Here, we use the Full-Stokes ice-sheet model Elmer/Ice for the Ekström Ice Shelf embayment in Dronning Maud Land, East Antarctica, to study the effect of ice rises on the overall stability of the ice sheet. We initialise the model for prognostic simulations using today’s surface velocity to invert for basal drag and ice-shelf rigidity in full Stokes. To account for inconsistencies in the input data we relax the initial geometry over 10 years resulting in a quasi-steady state which stays close to today’s observations. As a first application of this 3D model including the fully coupled system with a dynamic grounding line, we derive erosion rates for the outlet glaciers of the Ekström Ice Shelf embayment, revealing moderate rates of up to∼0.75 mm/yr, using published sliding-erosion ratios from others areas. This will be compared to sedimentary structures derived from seismic measurements. Our perturbation experiments of the Ekström Ice Shelf embayment will investigate the effect of changing atmospheric/oceanic conditions on ice-rise evolution and divide migration using for the first time a fully coupled 3D ice-sheet model. This approach will permit to unambiguously show if and how much changes in external forcing influence divide position and internal stratigraphy, a proxy that has been widely used to deduce stable ice-flow and grounding-line conditions, but from studies that either use simplified model physics or omit the coupling between ice rise and ice shelf. Our novel modelling set-up will help to unravel the importance of ice rises for the past and future timing of sea-level rise, and represents a first step towards using ice rises as a Pan-Antarctic archive to constrain paleo ice-sheet simulations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-10-29
    Description: The majority of Antarctic ice shelves are bounded by grounded ice rises. These ice rises exhibit local flow fields that partially oppose the flow of the surrounding ice shelves. Formation of ice rises is accompanied by a characteristic upward-arching internal stratigraphy (“Raymond arches”), whose geometry can be analysed to infer information about past ice-sheet changes in areas where other archives such as rock outcrops are missing. Here we present an improved modelling framework to study ice-rise evolution using a satellite-velocity calibrated, isothermal, and isotropic 3-D full-Stokes model including grounding-line dynamics at the required mesh resolution (〈500 m). This overcomes limitations of previous studies where ice-rise modelling has been restricted to 2-D and excluded the coupling between the ice shelf and ice rise. We apply the model to the Ekström Ice Shelf, Antarctica, containing two ice rises. Our simulations investigate the effect of surface mass balance and ocean perturbations onto ice-rise divide position and interpret possible resulting unique Raymond arch geometries. Our results show that changes in the surface mass balance result in immediate and sustained divide migration (〉2.0 m yr−1) of up to 3.5 km. In contrast, instantaneous ice-shelf disintegration causes a short-lived and delayed (by 60–100 years) response of smaller magnitude (〈0.75 m yr−1). The model tracks migration of a triple junction and synchronous ice-divide migration in both ice rises with similar magnitude but differing rates. The model is suitable for glacial/interglacial simulations on the catchment scale, providing the next step forward to unravel the ice-dynamic history stored in ice rises all around Antarctica.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...