GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 436 (2005), S. 542-545 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Plate tectonic theory hinges on the concept of a relatively rigid lithosphere moving over a weaker asthenosphere, yet the nature of the lithosphere–asthenosphere boundary remains poorly understood. The gradient in seismic velocity that occurs at this boundary is central to constraining ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L13308, doi:10.1029/2011GL047705.
    Description: In the forearc mantle wedge, the thermal field depends strongly on slab-driven mantle wedge flow. The flow is in turn affected by the thermal field via the temperature dependence of mantle rheology. Using thermal modeling, we show that the nonlinear feedback between the thermal and flow fields always leads to complete stagnation of the mantle wedge over a shallow, weakened part of the slab-mantle interface and an abrupt onset of mantle flow further down-dip. The abrupt increase in flow velocity leads to a sharp thermal transition from a cold stagnant to a hot flowing part of the wedge. This sharp thermal transition is inherent to all subduction zones, explaining a commonly observed sharp arc-ward increase in seismic attenuation.
    Description: This research was partially supported by National Science Foundation through a MARGINS postdoctoral fellowship (NSF OCE‐0840800) and by Natural Environment Research Council.
    Keywords: Mantle rheology ; Mantle wedge ; Seismic attenuation ; Subduction zone ; Thermal structure
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-22
    Description: Constraining the controlling factors of fault rupture is fundamentally important. Fluids influence earthquake locations and magnitudes, although the exact pathways through the lithosphere are not well-known. Ocean transform faults are ideal for studying faults and fluid pathways given their relative simplicity. We analyse seismicity recorded by the Passive Imaging of the Lithosphere-Asthenosphere Boundary (PI-LAB) experiment, centred around the Chain Fracture Zone. We find earthquakes beneath morphological transpressional features occur deeper than the brittle-ductile transition predicted by simple thermal models, but elsewhere occur shallower. These features are characterised by multiple parallel fault segments and step overs, higher proportions of smaller events, gaps in large historical earthquakes, and seismic velocity structures consistent with hydrothermal alteration. Therefore, broader fault damage zones preferentially facilitate fluid transport. This cools the mantle and reduces the potential for large earthquakes at localized barriers that divide the transform into shorter asperity regions, limiting earthquake magnitudes on the transform.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-03
    Description: Constraining the controlling factors of fault rupture is fundamental to understanding the earthquake cycle. Fluids can influence earthquake locations and magnitudes, although the exact pathways of fluids through the lithosphere are not well-known. Ocean transform faults are an ideal laboratory to study the factors controlling fault ruptures and fluid pathways given their relative simplicity. Here, we analyse seismicity recorded by the Passive Imaging of the Lithosphere-Asthenosphere Boundary (PI-LAB) experiment, centred around the Chain Fracture Zone. We find that earthquakes beneath mapped morphological transpressional features occur deeper than the brittle-ductile transition predicted by simple thermal models but elsewhere occur shallower. These features are characterised by multiple parallel fault segments and step overs, high b-values, gaps in large historical earthquakes, and seismic velocity structures consistent with hydrothermal alteration. This suggests that broader fault damage zones preferentially facilitate fluid transport into the lithosphere. Although this cools the mantle, it also reduces the potential for large earthquakes at punctuated locations (barriers). These barriers divide the transform into asperity segments that are shorter, thereby limiting the earthquake magnitudes in these regions.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...