GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Earth sciences. ; Fluid mechanics. ; Mathematics. ; Physical geography.
    Description / Table of Contents: Chapter 1. Fundamentals 1 -- Chapter 2. Fundamentals 2 -- Chapter 3. Fundamentals 3 -- Chapter 4. Aerodynamics -- Chapter 5. Waves -- Chapter 6. Instabilities -- Chapter 7. Chaos and Turbulence: an introduction -- Chapter 8. Some magneto hydrodynamics.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XVI, 326 p. 126 illus., 1 illus. in color.)
    Edition: 1st ed. 2020.
    ISBN: 9783030495626
    Series Statement: Springer eBook Collection
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-15
    Description: Variability of the North Atlantic Oscillation (NAO) drives wintertime temperature anomalies in the Northern Hemisphere. Dynamical seasonal prediction systems can skilfully predict the winter NAO. However, prediction of the NAO‐dependent air temperature anomalies remains elusive, partially due to the low variability of predicted NAO. Here, we demonstrate a hidden potential of a multi‐model ensemble of operational seasonal prediction systems for predicting wintertime temperature by increasing the variability of predicted NAO. We identify and subsample those ensemble members which are close to NAO index statistically estimated from initial autumn conditions. In our novel multi‐model approach, the correlation prediction skill for wintertime Central Europe temperature is improved from 0.25 to 0.66, accompanied by an increased winter NAO prediction skill of 0.9. Thereby, temperature anomalies can be skilfully predicted for the upcoming winter over a large part of the Northern Hemisphere through increased variability and skill of predicted NAO.
    Description: Plain Language Summary: Wintertime temperature in the Northern Hemisphere is regulated by the variations of atmospheric pressure, represented by the so‐called North Atlantic Oscillation (NAO). The NAO's phase—negative or positive—is associated with the pathways of cold and warm air masses leading to cold or warm winters in Europe. While the NAO phase can be predicted well, predictions of the NAO‐dependent air temperature remain elusive. Specifically, it is challenging to predict the strength of the NAO, the most important requirement for the accurate prediction of wintertime temperature. Here, we improve wintertime temperature prediction by increasing the strength of the predicted NAO. We use observation based autumn Northern Hemisphere ocean and air temperature, as well as ice and snow cover for statistical estimation of the first guess NAO for the upcoming winter. Then, we sub‐select only those simulations from the multi‐model ensemble, which are consistent with our first guess NAO. As a result, based on these selected members, the wintertime temperature prediction is substantially improved over a large part of the Northern Hemisphere.
    Description: Key Points: Amplitude and skill of predicted North Atlantic Oscillation (NAO) improve significantly by subsampling of ensemble of existing seasonal prediction systems. Amplified NAO variability leads to significant improvement in predicting the upcoming winter temperature anomalies in the Northern Hemisphere.
    Description: Deutsche Forschungsgemeinschaft
    Description: Climate, Climatic Change, and Society
    Description: Marine Institute grant
    Description: European Union's Horizon 2020 research and innovation programme
    Description: https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=overview
    Description: http://www.ecmwf.int/en/forecasts/datasets
    Keywords: ddc:551.6 ; seasonal prediction ; wintertime temperature anomalies
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-12
    Description: Impact studies of the Atlantic Multidecadal Variability (AMV) on the climate system are severely limited by the lack of sufficiently long observational records. Relying on a model-based approach is therefore mandatory to overcome this limitation. Here, a novel experimental setup, designed in the framework of the CMIP6-endorsed Decadal Climate Prediction Project, is applied to the CMCC climate model to analyse the remote climate impact of the AMV on the Northern Eurasian continent. Model results show that, during Boreal summer, an enhanced warming associated to a positive phase of the AMV, induces a hemispheric-scale wave-train response in the atmospheric circulation, affecting vast portions of Northern Eurasia. The overall AMV-induced response consists in an upper-tropospheric anomalous flows leading to a rainfall increase over Scandinavia and Siberia and to an intensified river runoff by the major Siberian rivers. A strengthening of Eurasian shelves' stratification, broadly consistent with the anomalous river discharge, is found in the proximity of the river mouths during positive-AMV years. Considering that Siberian rivers (Ob', Yenisei and Lena) account for almost half of the Arctic freshwater input provided by terrestrial sources, the implications of these findings for decadal variability and predictability of the Arctic environment are also discussed.
    Description: Published
    Description: 14444
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-02-14
    Description: Recent studies point to the sensitivity of mid-latitude winter climate to Arctic sea ice variability. However, there remain contradictory results in terms of character and timing of Northern Hemisphere large-scale circulation features to Arctic sea ice changes. This study assesses the impact of realistic late autumn eastern Arctic sea ice anomalies on atmospheric wintertime circulation at mid-latitudes, pointing to a hidden potential for seasonal predictability. ​Using a dynamical seasonal prediction system, an ensemble of seasonal forecast simulations of 23 historical winter seasons is run with reduced November sea ice cover in the Barents-Kara Seas, and is compared to the respective control seasonal hindcast simulations set. ​A non energy-conserving approach is adopted for achieving the desired sea ice loss, with artificial heat being added conditionally to the ocean surface heat fluxes so as to inhibit the formation of sea ice during November. Our results point to a robust atmospheric circulation response in the North Pacific sector, similar to previous findings on the multidecadal timescale. Specifically, an anticyclonic anomaly at upper and lower levels is identified over the eastern midlatitude North Pacific, leading to dry conditions over the North American southwest coast. The responses are related to a re-organization (weakening) of west-Pacific tropical convection and interactions with the tropical Hadley circulation. ​A possible interaction of the poleward-shifted Pacific eddy-driven jet stream and the Hadley cell is discussed​. ​The winter circulation response in the Euro-Atlantic sector is ephemeral in character and statistically significant in January only, corroborating previous findings of an intermittent and non-stationary Arctic sea ice-NAO link during boreal winter. These results ​aid our understanding of the seasonal impacts of reduced eastern Arctic sea ice on the midlatitude atmospheric circulation with implications for seasonal predictability in wintertime.
    Description: Published
    Description: 2687–2700
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-14
    Description: The influence of the Atlantic multidecadal variability (AMV) on the North Atlantic storm track and eddy-driven jet in the winter season is assessed via a coordinated analysis of idealized simulations with state-of-the-art coupled models. Data used are obtained from a multimodel ensemble of AMV± experiments conducted in the framework of the Decadal Climate Prediction Project component C. These experiments are performed by nudging the surface of the Atlantic Ocean to states defined by the superimposition of observed AMV± anomalies onto the model climatology. A robust extratropical response is found in the form of a wave train extending from the Pacific to the Nordic seas. In the warm phase of the AMV compared to the cold phase, the Atlantic storm track is typically contracted and less extended poleward and the low-level jet is shifted toward the equator in the eastern Atlantic. Despite some robust features, the picture of an uncertain and model-dependent response of the Atlantic jet emerges and we demonstrate a link between model bias and the character of the jet response.
    Description: Published
    Description: 347-360
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-22
    Description: The predictability of the Northern Hemisphere stratosphere and its underlying dynamics are investigated in five state-of-the-art seasonal prediction systems from the Copernicus Climate Change Service (C3S) multi-model database. Special attention is devoted to the connection between the stratospheric polar vortex (SPV) and lower-stratosphere wave activity (LSWA). We find that in winter (December to February) dynamical forecasts initialised on the first of November are considerably more skilful than empirical forecasts based on October anomalies. Moreover, the coupling of the SPV with mid-latitude LSWA (i.e., meridional eddy heat flux) is generally well reproduced by the forecast systems, allowing for the identification of a robust link between the predictability of wave activity above the tropopause and the SPV skill. Our results highlight the importance of November-to-February LSWA, in particular in the Eurasian sector, for forecasts of the winter stratosphere. Finally, the role of potential sources of seasonal stratospheric predictability is considered: we find that the C3S multi-model overestimates the stratospheric response to El Niño–Southern Oscillation (ENSO) and underestimates the influence of the Quasi–Biennial Oscillation (QBO).
    Description: Published
    Description: 2109–2130
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-06-22
    Description: El Niño Southern Oscillation (ENSO) represents the major driver of interannual climate variability at global scale. Observational and model-based studies have fostered a long-standing debate on the shape and intensity of the ENSO influence over the Euro-Mediterranean sector. Indeed, the detection of this signal is strongly affected by the large internal variability that characterizes the atmospheric circulation in the North Atlantic–European (NAE) region. This study explores if and how the low-frequency variability of North Pacific sea surface temperature (SST) may impact the El Niño-NAE teleconnection in late winter, which consists of a dipolar pattern between middle and high latitudes. A set of idealized atmosphere-only experiments, prescribing different phases of the anomalous SST linked to the Pacific Decadal Oscillation (PDO) superimposed onto an El Niño-like forcing in the tropical Pacific, has been performed in a multi-model framework, in order to assess the potential modulation of the positive ENSO signal. The modelling results suggest, in agreement with observational estimates, that the PDO negative phase (PDO−) may enhance the amplitude of the El Niño-NAE teleconnection, while the dynamics involved appear to be unaltered. On the other hand, the modulating role of the PDO positive phase (PDO+) is not reliable across models. This finding is consistent with the atmospheric response to the PDO itself, which is robust and statistically significant only for PDO−. Its modulation seems to rely on the enhanced meridional SST gradient and the related turbulent heat-flux released along the Kuroshio–Oyashio extension. PDO− weakens the North Pacific jet, whereby favoring more poleward propagation of wave activity, strengthening the El Niño-forced Rossby wave-train. These results imply that there might be conditional predictability for the interannual Euro-Mediterranean climate variability depending on the background state.
    Description: Published
    Description: 2009–2029
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-22
    Description: Land surface and atmosphere are interlocked by the hydrological and energy cycles and the effects of soil water-air coupling can modulate near-surface temperatures. In this work, three paired experiments were designed to evaluate impacts of different soil moisture initial and boundary conditions on summer temperatures in the Mediterranean transitional climate regime region. In this area, evapotranspiration is not limited by solar radiation, rather by soil moisture, which therefore controls the boundary layer variability. Extremely dry, extremely wet and averagely humid ground conditions are imposed to two global climate models at the beginning of the warm and dry season. Then, sensitivity experiments, where atmosphere is alternatively interactive with and forced by land surface, are launched. The initial soil state largely affects summer near-surface temperatures: dry soils contribute to warm the lower atmosphere and exacerbate heat extremes, while wet terrains suppress thermal peaks, and both effects last for several months. Land-atmosphere coupling proves to be a fundamental ingredient to modulate the boundary layer state, through the partition between latent and sensible heat fluxes. In the coupled runs, early season heat waves are sustained by interactive dry soils, which respond to hot weather conditions with increased evaporative demand, resulting in longer-lasting extreme temperatures. On the other hand, when wet conditions are prescribed across the season, the occurrence of hot days is suppressed. The land surface prescribed by climatological precipitation forcing causes a temperature drop throughout the months, due to sustained evaporation of surface soil water. Results have implications for seasonal forecasts on both rain-fed and irrigated continental regions in transitional climate zones.
    Description: Published
    Description: 1943–1963
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: 01.01. Atmosphere ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...