GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Kiel : Inst. für Meereskunde
    Keywords: Statistik ; Atlantischer Ozean Süd ; Agulhasstrom ; Meeresströmung ; Meerwasser ; Austausch ; Geschichte 1997-1999
    Type of Medium: Online Resource
    Pages: Online-Ressource (210 Seiten, 26 MB) , Diagramme, Karten
    Series Statement: Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel 318
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    Narragansett : Univ. of Rhode Island
    Type of Medium: Book
    Pages: III, 198 S , graph. Darst.
    Language: Undetermined
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 333 (1988), S. 649-651 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The life of Meddies is of interest to oceanographers for at least two different reasons. One reason for tracking Meddies is to assess their role in the lateral dispersion of heat and salt2'7'8. The high-salinity Mediterranean outflow spreads into the North Atlantic to form a 'tongue' which can be ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 76 (1). pp. 5-11.
    Publication Date: 2019-01-21
    Description: Widespread and sustained in situ ocean measurements are essential to an improved understanding of the state of the ocean and its role in global change. Merchant marine vessels can play a major role in ocean monitoring, yet apart from routine weather observations and upper-ocean temperature measurements, they constitute a vastly underutilized resource due to lack of suitable instrumentation. Examples of ways in which vessels can assist include profiling techniques of physical properties, chemical sampling via automated water samplers, optical techniques to measure various biological parameters, and ground truth measurements for remote sensing from orbiting and geostationary satellites. Further, ships can act as relays between subsurface instrumentation and satellite communication services. To take advantage of the opportunities that the maritime industry can provide, two steps must be taken. The first is to initiate an instrumentation development program with emphasis on techniques optimized for highly automated use onboard ships at 15-20-kt speeds. The second is to forge partnerships or links between academic and government laboratories and the maritime industry for the institution and maintenance of such monitoring programs. No doubt significant resources will be required, but in the long run the improved ability to monitor the state of ocean in situ will make the effort more than worthwhile.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Institut für Meereskunde
    In:  Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel, 318 . Institut für Meereskunde, Kiel, Germany, 194 pp.
    Publication Date: 2019-09-23
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: The dense overflow waters of the Nordic Seas are an integral link and important diagnostic for the stability of the Atlantic Meridional Overturning Circulation (AMOC). The pathways feeding the overflow remain, however, poorly resolved. Here we use multiple observational platforms and an eddy-resolving ocean model to identify an unrecognized deep flow toward the Faroe Bank Channel. We demonstrate that anticyclonic wind forcing in the Nordic Seas via its regulation of the basin circulation plays a key role in activating an unrecognized overflow path from the Norwegian slope – at which times the overflow is anomalously strong. We further establish that, regardless of upstream pathways, the overflows are mostly carried by a deep jet banked against the eastern slope of the Faroe-Shetland Channel, contrary to previous thinking. This deep flow is thus the primary conduit of overflow water feeding the lower branch of the AMOC via the Faroe Bank Channel.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-07-07
    Description: Rapid Arctic warming drives profound change in the marine environment that have significant socio-economic impacts within the Arctic and beyond, including climate and weather hazards, food security, transportation, infrastructure planning and resource extraction. These concerns drive efforts to understand and predict Arctic environmental change and motivate development of an Arctic Region Component of the Global Ocean Observing System (ARCGOOS) capable of collecting the broad, sustained observations needed to support these endeavors. This paper provides a roadmap for establishing the ARCGOOS. ARCGOOS development must be underpinned by a broadly endorsed framework grounded in high-level policy drivers and the scientific and operational objectives that stem from them. This should be guided by a transparent, internationally accepted governance structure with recognized authority and organizational relationships with the national agencies that ultimately execute network plans. A governance model for ARCGOOS must guide selection of objectives, assess performance and fitness-to-purpose, and advocate for resources. A requirements-based framework for an ARCGOOS begins with the Societal Benefit Areas (SBAs) that underpin the system. SBAs motivate investments and define the system�s science and operational objectives. Objectives can then be used to identify key observables and their scope. The domains of planning/policy, strategy, and tactics define scope ranging from decades and basins to focused observing with near real time data delivery. Patterns emerge when this analysis is integrated across an appropriate set of SBAs and science/operational objectives, identifying impactful variables and the scope of the measurements. When weighted for technological readiness and logistical feasibility, this can be used to select Essential ARCGOOS Variables, analogous to Essential Ocean Variables of the Global Ocean Observing System. The Arctic presents distinct needs and challenges, demanding novel observing strategies. Cost, traceability and ability to integrate region-specific knowledge have to be balanced, in an approach that builds on existing and new observing infrastructure. ARCGOOS should benefit from established data infrastructures following the Findable, Accessible, Interoperable, Reuseable Principles to ensure preservation and sharing of data and derived products. Linking to the Sustaining Arctic Observing Networks (SAON) process and involving Arctic stakeholders, for example through liaison with the International Arctic Science Committee (IASC), can help ensure success.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...