GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-11
    Description: The increasing overexploitation of water resources is observed on a global scale in the previous decades; this trend involves the coastal regions of Mediterranean Basin (Van Beynen et alii, 2012). As an effect of increasing groundwater discharge from coastal aquifers, the phenomenon of seawater intrusion is becoming a serious problem for most of the coastal aquifers, especially in the Mediterranean area (COST, 2003; COST, 2005). The aim of this paper is to present the modeling of a coastal porous aquifer located in the complex plain of Sibari (Southern Italy), a plain deeply modified as an effect of reclamation works realized after thirties. The model was implemented using piezometric historical data (from thirties) to establish the effect of seawater intrusion when the well discharge was negligible (natural conditions), the modification in subsequent decades, to be used for forecasting purpose and for evaluate the evolution of groundwater resource. The area actually represents a landscape with anthropic equilibrium based on the works of a land reclamation project (1960s-1990s). Study area is about 365 km2 for a coastline of about 35 km, about which an hydrogeological conceptual model was defined. The area can be conceptualized into three hydrogeological complexes (from the top): sand complex, a clay complex and a sand and conglomerate complex, constituting the deep aquifer, the bottom of which is not well-defined. Shallow aquifer is predominantly fed by direct rainwater infiltration. Deep aquifer is fed by outflows of the mountainous aquifers as the case of limestone aquifer of Pollino Mount,and of shallow granitic aquifer of the Sila massif (Guerricchio and Melidoro, 1975). The maximum piezometric levels of the deep aquifer are equivalent to approximately 40 m asl, so in some areas it presents artesian feature. The computer codes selected for numerical groundwater modelling were MODFLOW (McDonald and Harbaugh, 1998) and SEAWAT (Guo and Langevin, 2002). This groundwater flow modelling is based on the concept of a equivalent homogeneous porous medium by which it is assumed that the real heterogeneous aquifer can be simulated as homogeneous porous media within cells or elements (Anderson, 2002). The modeled aquifer area was uniformly discretized, using Peclet number, into a finite difference grid of 97,735 cells of 240 m x 350 m. For the vertical discretization, model was divided into five layers of variable thicknesses, defined on the basis of a multi-methodological geological survey. Climatic, hydrological and agricultural data were processed to defines inputs for the numerical model based on the variable-density flow. An hydrological balance using monthly and annual of 13 thermo-pluviometric stations falling in the study area, in the time period 1930-1975, was done (Polemio and Casarano, 2008, Polemio et alii, 2013). The numerical model was calibrated with PEST code with a correlation coefficient equal to 0,90. Preliminary results of steady flow and of groundwater salinity spatial are now available and shows it is not sustainable in the case of shallow aquifer and it can be improved in the case of deep aquifer.
    Description: Published
    Description: Husum (Germany)
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: open
    Keywords: Seawater intrusion ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The coastal karst aquifers are known to be highly vulnerable to anthropogenic and natural changes, and in particular to the overexploitation of groundwater resources. The high degree of vulnerability is due to their intrinsic characteristics, anthropogenic pollution, and the effects seawater intrusion. The progressive population concentration in coastal areas and the increasing discharge overlapped to peculiarities of karstic coastal aquifers constitute a huge worldwide problem, particularly relevant for coastal aquifers of the Mediterranean basin. In Italy, Apulia, with its coastline extending over 800 km, is the region with the largest coastal karst aquifers. The predominant karstic Apulian features make the region extremely poor of surface water resources and rich of high quality groundwater resources. These resources still allow the social and economic development of population, improving agricultural and tourist opportunities. The continuous increasing well discharge causes or contributes to the groundwater quality degradation, often making the groundwater unusable for irrigation and drinking (Polemio et al. 2009). The strategic importance of groundwater resources and its wise management for Apulian population is due to these risks (Cotecchia and Polemio 1998, Margiotta and Negri 2005). The aim of this study is to define the efficacy of existing management tools and to develop predictive scenarios to identify the best way to reconcile irrigation and drinking water demands with enduring availability of high quality groundwater. The Salento (Salentine Peninsula), was selected being the Apulian aquifer portion exposed to the highest risk of quality degradation due to seawater intrusion.
    Description: Published
    Description: Armacao dos Buzios (Brazil)
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Seawater intrusion ; groundwater modelling ; groundwater management ; coastal karstic aquifer ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Seawater intrusion is a pervasive problem affecting coastal aquifer, where the concentration of population and the increasing water demand creates risks of overexploitation, especially in those areas where is the only resource of drinking and irrigation water. This phenomenon is more considerable for the coastal karst aquifers, as observed in many Mediterranean countries and in some Italian regions as Friuli, Sardegna, Sicilia, Lazio, Campania and Puglia. This note aims to describe a research activity finalised to define a numerical model as management tools for groundwater resource of Salento (South Italy) to reduce the quantitative and qualitative degradation risks. The numerical codes used was MODFLOW (McDonald and Harbaught, 1988) and SEAWAT (Guo and Langevin, 2002). The active domain of the study area (active cells) covered approximately 2,300 km2 with 45,925 cells. Vertically, to allow a good lithological and hydrogeological discretization, the area was divided into 12 layers, from 214 to -350 m asl. Thickness and geometry of layers was defined on the basis of the aquifer conceptualisation based on the 3D knowledge of hydrogeological complexes. On the basis of detailed geological and hydrogeological conceptualisation, the climate change effects were considered in terms of natural recharge variations from 1930 to 1999 (Cotecchia et al., 2005; Polemio and Casarano, 2008). To take account of anthropogenic activity, mainly due to tourism and agriculture, the discharging trend was assessed, focusing on late decenniums (eighties and nineties), in which the discharge increase was mainly observed. Models representing the natural steady-state condition (using data of thirties) and transient scenarios of late decenniums were realised. The purpose of this first model implementation was, besides validated model, to assess the groundwater availability and quality in a recent period of seventy years (Polemio and Romanazzi, 2012; Romanazzi and Polemio, 2013). Results emphasize an essential decrease of piezometric levels and a worsening of seawater intrusion. On these bases, six forecasting transient scenarios were implemented, referred to future periods of about twenty years (2000-2020, 2021-2040 and 2041-2060) with the aim to predicting the evolution of piezometric level and seawater intrusion. For forecast data about precipitation and temperature, among the many models in the literature, we referred to the model developed by Giorgi and Lionello (2008), in relation to the defined scenario A1B. The model predicts temperature variations (°C) and precipitation percentage variation for the period 2001-2100. It was considered an average temperature variation form 0.9 °C (2001-2020) to 2.4 °C (2040-2060). Precipitation shows a negative percentage change (referred to 1960-80) equal to -3.9, -5.9 and -9,0% respectively for 2000-2020, 2021-2040 and 2041-2060. These climatic data are in agreement with other climate change models (Garcia- Ruiz et al., 2011). For the three future scenarios new recharge and discharge were assessed. In terms of discharge, they are mainly due to irrigation. For this kind of future utilisation two hypotheses were considered. The first assumes that type and extension of cultivations will be steady and, as an effect of climate change, the pressure on groundwater resource will further rise as necessary to satisfy irrigation demand (Dragoni and Sukhjia, 2008; Goderniaux et al., 2008). In the second hypothesis the irrigation discharge will be steady and equal to those of the 1999 due the adaption of cultivation types and irrigation practices. In both cases the scenario results show a general decrease of the piezometric head and a deterioration of water quality caused by seawater intrusion (Romanazzi et al., 2013). The results call for new land and groundwater resources management criteria. Considering the Water Framework Directive (EC, 2000) and international and regional experiences (LaMoreaux, 2010; Jiménez-Madrid, 2010; Polemio et al., 2009, Polemio et al., 2010), the study area was subdivided in three zones. To define the zone boundary, the threshold criterion was used (Polemio and Limoni, 2001; Polemio et al., 2009). The threshold between pure fresh groundwater and any type of mixing between fresh and saline groundwater was defined equal to of 0.5 g/l. In the first zone, the coastal zone, salinity was always (in the past) above the threshold, a transition zone, where salinity was variable respect to the threshold, and a third zone or inland zone where salinity value was permanently below the threshold. These three zones were implemented in the model. Different combinations of discharge criterions applied to these zones suggest the best choices to be applied for management criteria able to safely considered the future effects of climate changes.
    Description: Published
    Description: Husum (Germany)
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: open
    Keywords: Seawater intrusion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, 2014
    Publication Date: 2017-04-04
    Description: Second half of the 20th century was characterized by an increase of groundwater discharge. Numerous aquifers are overexploited in the world and in particular in the Mediterranean area. Problems tie to overexploitation, as piezometric decline and increase of seawater intrusion, are amplified in karst coastal aquifers where the whole effect could be a groundwater quality and quantity degradation. Focusing on Mediterranean countries, most part of coastal aquifers of Spain, France, Portugal, Slovenia, Croatia, Greece, Albania, Turkey, and Italy are karstic and affected, to different degrees, by seawater intrusion due high pumping extraction rates and low recharge. (COST, 2005; Polemio et al., 2010). Climate change may particularly aggravate these requirements, especially in the Mediterranean areas, due to the combined effects of semiarid condition climate, or reduced recharge and consequent increase of discharge (Cotecchia et al., 2003; Polemio 2005; Polemio et al., 2009). The general purpose of this paper is to prove the capability of large-scale numerical models in management of groundwater, in particular for achieve forecast scenarios to evaluate the impacts of climate change on groundwater resources of karst coastal aquifer of Salento (Southern Italy). The computer codes selected for numerical groundwater modelling were MODFLOW and SEAWAT. Three forecast transient scenarios, referred to 2001-2020, 2021-2040 and 2041-2060, were implemented, on the basis of calibrated and validated model, with the aim to predicting the evolution of piezometric level and seawater intrusion. The scenarios were discussed considering the effects of climate change, sea level rise and change of sea salinity.
    Description: Published
    Description: Viterbo, Italy
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: open
    Keywords: groundwater management ; MODFLOW ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The Mar Piccolo basin is an internal sea basin located along the Ionian coast (Southern Italy), and it is surrounded primarily by fractured carbonate karstic environment. Because of the karstic features, the main continental water inflow is from groundwater discharge. The Mar Piccolo basin represents a peculiar and sensitive environment and a social emergency because of sea water and sediments pollution. This pollution appears to be caused by the overlapping effects of dangerous anthropogenic activities, including heavy industries and commercial and navy dockyards. The paper aims to define the contribution of subaerial and submarine coastal springs to the hydrological dynamic equilibrium of this internal sea basin. A general approach was defined, including a hydrogeological basin border assessment to detect inflowing springs, detailed geological and hydrogeological conceptualisation, in situ submarine and subaerial spring measurements, and flow numerical modelling. Multiple sources of data were obtained to define a relevant geodatabase, and it contained information on approximately 2,000 wells, located in the study area (1,600 km2). The conceptualisation of the hydrogeological basin, which is 978 km2 wide, was supported by a 3D geological model that interpolated 716 stratigraphic logs. The variability in hydraulic conductivity was determined using hundreds of pumping tests. Five surveys were performed to acquire hydro-geochemical data and spring flow-yield measurements; the isotope groundwater age was assessed and used for model validation. The mean annual volume exchanged by the hydrogeological basin was assessed equal to 106.93 106 m3. The numerical modelling permitted an assessment of the mean monthly yield of each spring outflow (surveyed or not), travel time, and main path flow.
    Description: Published
    Description: 3A. Ambiente Marino
    Description: JCR Journal
    Description: embargoed_20160725
    Keywords: Coastal water quality ; Karstic coastal aquifer ; Spring yield ; Groundwater modelling ; Mediterranean Sea ; Italy ; Subaerial and submarine springs ; Apulia ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The study and management of the groundwater resources of a large, deep, coastal, karstic aquifer represent a very complex hydrogeological problem. Here, this problem is successfully approached by using an equivalent porous continuous medium (EPCM) to represent a karstic Apulian aquifer (southern Italy). This aquifer, which is located on a peninsula and extends to hundreds of metres depth, is the sole local source of high-quality water resources. These resources are at risk due to overexploitation, climate change and seawater intrusion. The model was based on MODFLOW and SEAWAT codes. Piezometric and salinity variations from 1930 to 2060 were simulated under three past scenarios (up to 1999) and three future scenarios that consider climate change, different types of discharge, and changes in sea level and salinity. The model was validated using surveyed piezometric and salinity data. An evident piezometric drop was confirmed for the past period (until 1999); a similar dramatic drop appears to be likely in the future. The lateral intrusion and upconing effects of seawater intrusion were non-negligible in the past and will be considerable in the future. All phenomena considered here, including sea level and sea salinity, showed non-negligible effects on coastal groundwater.
    Description: Published
    Description: 115-128
    Description: 5A. Energia e georisorse
    Description: JCR Journal
    Description: embargoed_20160501
    Keywords: Karstic coastal aquifer ; Numerical modelling ; Seawater intrusion ; Climate change ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...