GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2016-04-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Noisette, Fanny; Richard, Joëlle; Le Fur, Ines; Peck, Loyd S; Davoult, Dominique; Martin, Sophie (2014): Metabolic responses to temperature stress under elevated pCO2 in Crepidula fornicata. Journal of Molluscan Studies, 81(2), 238-246, https://doi.org/10.1093/mollus/eyu084
    Publication Date: 2024-03-15
    Description: In the current context of environmental change, ocean acidification is predicted to affect the cellular processes, physiology and behaviour of all marine organisms, impacting survival, growth and reproduction. In relation to thermal tolerance limits, the effects of elevated pCO2 could be expected to be more pronounced at the upper limits of the thermal tolerance window. Our study focused on Crepidula fornicata, an invasive gastropod which colonized shallow waters around European coasts during the 20th century. We investigated the effects of 10 weeks' exposure to current (380 µatm) and elevated (550, 750, 1,000 µatm) pCO2 on this engineer species using an acute temperature increase (1 °C/12 h) as the test. Respiration rates were measured on both males (small individuals) and females (large individuals). Mortality increased suddenly from 34 °C, particularly in females. Respiration rate in C. fornicata increased linearly with temperature between 18 and 34 °C, but no differences were detected between the different pCO2 conditions either in the regressions between respiration rate and temperature or in Q10 values. In the same way, condition indices were similar in all the pCO2 treatments at the end of the experiment, but decreased from the beginning of the experiment. This species was highly resistant to acute exposure to high temperature regardless of pCO2 levels, even though food was limited during the experiment. Crepidula fornicata appears to have either developed resistance mechanisms or a strong phenotypic plasticity to deal with fluctuations of physicochemical parameters in its habitat. This suggests that invasive species may be more resistant to future environmental changes than its native competitors.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Aragonite saturation state, standard error; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Condition index; Crepidula fornicata; EXP; Experiment; Factor quantifying temperature dependent change of rates of processes; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Individuals; Laboratory experiment; Mollusca; Morlaix_Bay_OA; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Potentiometric; Potentiometric titration; Respiration; Respiration rate, oxygen; Salinity; Sex; Single species; Species; Temperate; Temperature; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 13886 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: This study examined the effects of long-term culture under altered conditions on the Antarctic sea urchin, Sterechinus neumayeri. Sterechinus neumayeri was cultured under the combined environmental stressors of lowered pH (-0.3 and -0.5 pH units) and increased temperature (+2 °C) for 2 years. This time-scale covered two full reproductive cycles in this species and analyses included studies on both adult metabolism and larval development. Adults took at least 6-8 months to acclimate to the altered conditions, but beyond this, there was no detectable effect of temperature or pH. Animals were spawned after 6 and 17 months exposure to altered conditions, with markedly different outcomes. At 6 months, the percentage hatching and larval survival rates were greatest in the animals kept at 0 °C under current pH conditions, whilst those under lowered pH and +2 °C performed significantly less well. After 17 months, performance was not significantly different across treatments, including controls. However, under the altered conditions urchins produced larger eggs compared with control animals. These data show that under long-term culture adult S. neumayeri appear to acclimate their metabolic and reproductive physiology to the combined stressors of altered pH and increased temperature, with relatively little measureable effect. They also emphasize the importance of long-term studies in evaluating effects of altered pH, particularly in slow developing marine species with long gonad maturation times, as the effects of altered conditions cannot be accurately evaluated unless gonads have fully matured under the new conditions.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Antarctic; Aragonite saturation state; Aragonite saturation state, standard error; Arm length, postoral; Arm length, postoral, standard error; Ash free dry mass; Back_Bay_Lagoon; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard error; Calcium carbonate, mass; Calcium carbonate, standard error; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Development; Diameter; Diameter, standard error; Dry mass; Echinodermata; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gonadosomatic index; Gonadosomatic index, standard error; Growth/Morphology; Laboratory experiment; Life stage; Mass, standard error; Month; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Percentage; Percentage, standard error; pH; pH, standard error; Polar; Potentiometric; Reproduction; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard error; Salinity; Salinity, standard error; Single species; Species; Stage; Sterechinus neumayeri; Temperature; Temperature, water; Temperature, water, standard error; Time point, descriptive; Treatment; Wet mass
    Type: Dataset
    Format: text/tab-separated-values, 2635 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...