GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 422 (2003), S. 134-134 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Nitrogen oxides are trace gases that critically affect atmospheric chemistry and aerosol formation. Vegetation is usually regarded as a sink for these gases, although nitric oxide and nitrogen dioxide have been detected as natural emissions from plants. Here we use in situ measurements to show ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-13
    Description: Wetlands are one of the most significant natural sources of methane (CH4) to the atmosphere. They emit CH4 because decomposition of soil organic matter in waterlogged anoxic conditions produces CH4, in addition to carbon dioxide (CO2). Production of CH4 and how much of it escapes to the atmosphere depend on a multitude of environmental drivers. Models simulating the processes leading to CH4 emissions are thus needed for upscaling observations to estimate present CH4 emissions and for producing scenarios of future atmospheric CH4 concentrations. Aiming at a CH4 model that can be added to models describing peatland carbon cycling, we composed a model called HIMMELI that describes CH4 build-up in and emissions from peatland soils. It is not a full peatland carbon cycle model but it requires the rate of anoxic soil respiration as input. Driven by soil temperature, leaf area index (LAI) of aerenchymatous peatland vegetation, and water table depth (WTD), it simulates the concentrations and transport of CH4, CO2, and oxygen (O2) in a layered one-dimensional peat column. Here, we present the HIMMELI model structure and results of tests on the model sensitivity to the input data and to the description of the peat column (peat depth and layer thickness), and demonstrate that HIMMELI outputs realistic fluxes by comparing modeled and measured fluxes at two peatland sites. As HIMMELI describes only the CH4-related processes, not the full carbon cycle, our analysis revealed mechanisms and dependencies that may remain hidden when testing CH4 models connected to complete peatland carbon models, which is usually the case. Our results indicated that (1) the model is flexible and robust and thus suitable for different environments; (2) the simulated CH4 emissions largely depend on the prescribed rate of anoxic respiration; (3) the sensitivity of the total CH4 emission to other input variables is mainly mediated via the concentrations of dissolved gases, in particular, the O2 concentrations that affect the CH4 production and oxidation rates; (4) with given input respiration, the peat column description does not significantly affect the simulated CH4 emissions in this model version.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-12
    Description: Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990–2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. For CH4 emissions, over the updated 2015–2019 period, which covers a sufficiently robust number of overlapping estimates, and most importantly the NGHGIs, the anthropogenic BU approaches are directly comparable, accounting for mean emissions of 20.5 Tg CH4 yr−1 (EDGARv6.0, last year 2018) and 18.4 Tg CH4 yr−1 (GAINS, last year 2015), close to the NGHGI estimates of 17.5±2.1 Tg CH4 yr−1. TD inversion estimates give higher emission estimates, as they also detect natural emissions. Over the same period, high-resolution regional TD inversions report a mean emission of 34 Tg CH4 yr−1. Coarser-resolution global-scale TD inversions result in emission estimates of 23 and 24 Tg CH4 yr−1 inferred from GOSAT and surface (SURF) network atmospheric measurements, respectively. The magnitude of natural peatland and mineral soil emissions from the JSBACH–HIMMELI model, natural rivers, lake and reservoir emissions, geological sources, and biomass burning together could account for the gap between NGHGI and inversions and account for 8 Tg CH4 yr−1. For N2O emissions, over the 2015–2019 period, both BU products (EDGARv6.0 and GAINS) report a mean value of anthropogenic emissions of 0.9 Tg N2O yr−1, close to the NGHGI data (0.8±55 % Tg N2O yr−1). Over the same period, the mean of TD global and regional inversions was 1.4 Tg N2O yr−1 (excluding TOMCAT, which reported no data). The TD and BU comparison method defined in this study can be operationalized for future annual updates for the calculation of CH4 and N2O budgets at the national and EU27 + UK scales. Future comparability will be enhanced with further steps involving analysis at finer temporal resolutions and estimation of emissions over intra-annual timescales, which is of great importance for CH4 and N2O, and may help identify sector contributions to divergence between prior and posterior estimates at the annual and/or inter-annual scale. Even if currently comparison between CH4 and N2O inversion estimates and NGHGIs is highly uncertain because of the large spread in the inversion results, TD inversions inferred from atmospheric observations represent the most independent data against which inventory totals can be compared. With anticipated improvements in atmospheric modeling and observations, as well as modeling of natural fluxes, TD inversions may arguably emerge as the most powerful tool for verifying emission inventories for CH4, N2O and other GHGs.
    Description: Published
    Description: 1197–1268
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...