GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Inagaki, F; Hinrichs, Kai-Uwe; Kubo, Y; Bowles, Marshall W; Heuer, Verena B; Hong, W-L; Hoshino, Tatsuhiko; Ijiri, Akira; Imachi, H; Ito, M; Kaneko, Masanori; Lever, Mark A; Lin, Yu-Shih; Methe, B A; Morita, S; Morono, Yuki; Tanikawa, Wataru; Bihan, M; Bowden, Stephen A; Elvert, Marcus; Glombitza, Clemens; Gross, D; Harrington, G J; Hori, T; Li, K; Limmer, D; Liu, Chiung-Hui; Murayama, M; Ohkouchi, Naohiko; Ono, Shuhei; Park, Young-Soo; Phillips, S C; Prieto-Mollar, Xavier; Purkey, M; Riedinger, Natascha; Sanada, Yoshinori; Sauvage, J; Snyder, Glen T; Susilawati, R; Takano, Yoshinori; Tasumi, E; Terada, Takeshi; Tomaru, Hitoshi; Trembath-Reichert, E; Wang, D T; Yamada, Y (2015): Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science, 439 (6246), 420-424, https://doi.org/10.1126/science.aaa6882
    Publication Date: 2023-04-29
    Description: Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from 〈10 to ~10**4 cells cm**-3. Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-09
    Keywords: 337-C0020A; Chikyu; Deep Coalbed Biosphere off Shimokita; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DRILL; Drilling/drill rig; Exp337; Gas chromatography - Mass spectrometry (GC-MS); Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Northwest Pacific; Ocean Drilling Program; ODP; Sample code/label; Sample ID; δ Deuterium, methane; δ Deuterium, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 334 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ertefai, Tobias F; Heuer, Verena B; Prieto-Mollar, Xavier; Vogt, Christoph; Sylva, Sean P; Seewald, Jeffrey S; Hinrichs, Kai-Uwe (2010): The biogeochemistry of sorbed methane in marine sediments. Geochimica et Cosmochimica Acta, 74, 6033-6048, https://doi.org/10.1016/j.gca.2010.08.006
    Publication Date: 2024-02-02
    Description: Sorption of volatile hydrocarbon gases (VHCs) to marine sediments is a recognized phenomenon that has been investigated in the context of petroleum exploration. However, little is known about the biogeochemistry of sorbed methane and higher VHCs in environments that are not influenced by thermogenic processes. This study evaluated two different extraction protocols for sorbed VHCs, used high pressure equipment to investigate the sorption of methane to pure clay mineral phases, and conducted a geochemical and mineralogical survey of sediment samples from different oceanographic settings and geochemical regimes that are not significantly influenced by thermogenic gas. Extraction of sediments under alkaline conditions yielded higher concentrations of sorbed methane than the established protocol for acidic extraction. Application of alkaline extraction in the environmental survey revealed the presence of substantial amounts of sorbed methane in 374 out of 411 samples (91%). Particularly high amounts, up to 2.1 mmol kg**-1 dry sediment, were recovered from methanogenic sediments. Carbon isotopic compositions of sorbed methane suggested substantial contributions from biogenic sources, both in sulfate-depleted and sulfate-reducing sediments. Carbon isotopic relationships between sorbed and dissolved methane indicate a coupling of the two pools. While our sorption experiments and extraction conditions point to an important role for clay minerals as sorbents, mineralogical analyses of marine sediments suggest that variations in mineral composition are not controlling variations in quantities of sorbed methane. We conclude that the distribution of sorbed methane in sediments is strongly influenced by in situ production.
    Keywords: 151; 16; 19; 201-1231E; 301-U1301C; 311-U1326D; 6K954CR/CG; 6K955CR; 6K957CY; 6K958CG; ARK-XXII/1b; Batumi seep area; BS340G; BS341G; BS344G; BS345GR; BS346GR; BS349G; BS350G; BS351DAPC; BS352G; BS356G; BS359DAPC; BS362G; BS363G; Cascadia Margin Gas Hydrates; Center for Marine Environmental Sciences; Chapopote; DAPC; Dive84; Dolgovskoy mound; DRILL; Drilling/drill rig; Dvurechenskii; Dvurechenskii mud vulcano; Dynamic autoclave piston corer; Exp301; Exp311; GC; GC_T; GeoB10606; GeoB10607; GeoB10610; GeoB10624-1; GeoB10625; GeoB12210-6; GeoB9903-1; GeoB9903-2; GeoB9906-3; GeoB9906-4; GeoB9908-1; GeoB9908-4; GeoB9909-1; GeoB9909-2; GeoB9909-3; GeoB9913-2; GeoB9913-5; GeoB9915-2; GeoB9916-1; Gravity corer; Gravity Corer/temperature probe; Iberia mound; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Japan Trench, seep site 1; Japan Trench, seep site 2; Joides Resolution; Juan de Fuca Hydrogeology; Juan de Fuca Ridge, North Pacific Ocean; Leg201; M67/2b; M72/2; M72/2_310; M72/2_314; M72/2_319_PUC-3; M74/2; M74/2_979-6; MARUM; Meteor (1986); Multicorer with television; Norwegian Sea; Oil Ridge; Pechori Mound; Petroleum mound; Polarstern; Professor Logachev; PS70; PS70/075-1; PUC; Push corer; Remote operated vehicle; ROV; SL-3; SL-6; SL-9; South Pacific Ocean; Television-Grab; TTR-15; TVG; TVMUC; TV-MUC-1; YK06-05; Yokosuka
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lever, Mark A; Rouxel, Olivier J; Alt, Jeffrey C; Shimizu, Nobumichi; Ono, Shuhei; Coggon, Rosalind M; Shanks, Wayne C; Lapham, Laura; Elvert, Marcus; Prieto-Mollar, Xavier; Hinrichs, Kai-Uwe; Inagaki, Fumio; Teske, Andreas P (2013): Evidence for Microbial Carbon and Sulfur Cycling in Deeply Buried Ridge Flank Basalt. Science, 339(6125), 1305-1308, https://doi.org/10.1126/science.1229240
    Publication Date: 2024-02-12
    Description: Sediment-covered basalt on the flanks of mid-ocean ridges constitutes most of Earth's oceanic crust, but the composition and metabolic function of its microbial ecosystem are largely unknown. By drilling into 3.5-million-year-old subseafloor basalt, we demonstrated the presence of methane- and sulfur-cycling microbes on the eastern flank of the Juan de Fuca Ridge. Depth horizons with functional genes indicative of methane-cycling and sulfate-reducing microorganisms are enriched in solid-phase sulfur and total organic carbon, host d13C- and d34S-isotopic values with a biological imprint, and show clear signs of microbial activity when incubated in the laboratory. Downcore changes in carbon and sulfur cycling show discrete geochemical intervals with chemoautotrophic d13C signatures locally attenuated by heterotrophic metabolism.
    Keywords: 301-U1301B; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Exp301; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Joides Resolution; Juan de Fuca Hydrogeology; Mass spectrometer Finnigan Delta Plus XP; Replicate; Sample code/label; Treatment; δ13C, methane
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...