GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Polymere ; Metall ; Grenzfläche ; Adhäsion ; Alterung
    Type of Medium: Online Resource
    Pages: Online-Ressource (75 S., 861 KB) , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 03D0074A/74D. - Verbund-Nr. 01020139. - Literaturangaben , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Auch als gedr. Ausg. vorh , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Epoxy coatings. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (541 pages)
    Edition: 1st ed.
    ISBN: 9783527803750
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Preface -- Section A Initial State of Adhesive Joints -- Chapter A.1 Adhesion and Interphases: The Basic Ideas in Brief -- A.1.1 Introductory Remarks and General Concepts -- A.1.2 Fundamental Adhesive Interactions - the Microscopic Origin and Further Concepts -- A.1.2.1 Physical Intermolecular Forces -- A.1.2.1.1 Bi-Molecular Interactions -- A.1.2.1.2 Physical Interactions Between Condensed Phases -- A.1.2.2 Chemical Adhesion Mechanisms -- A.1.2.2.1 A Brief Sketch of MO Theory -- A.1.2.2.2 An Extension to Macromolecules and Solids - the Electron Band Structure -- A.1.2.2.3 Chemical Reactions - General Aspects -- A.1.2.2.4 Chemical Adhesion Mechanisms in Reactive Epoxies on Inorganic Solids -- A.1.2.2.5 Chemical Adhesion Mechanisms in Reactive Polyurethanes on Inorganic Solids -- A.1.2.3 The Electrostatic Component of Adhesion -- A.1.2.3.1 Mobile Charge Carriers and the Electric Double Layer -- A.1.2.3.2 Continuum Model for the Electric Double Layer Built of Mobile Electrons -- A.1.2.4 Microscopic Adhesion Mechanisms - Co-action at the Phase Boundary -- A.1.2.5 Mechanical Interlocking -- A.1.3 The Interphase - Elemental State of the Adhesive-Adherend Phase Boundary -- A.1.3.1 Polymer Adhesives on Impenetrable Solids -- A.1.3.2 Polymerisation on Solids -- A.1.3.3 The Contact Between Viscoelastic Polymers -- A.1.4 Closing Remarks: Fundamental vs. Practical Adhesion -- References -- Further Readings -- Chapter A.2 Adhesive Network Formation: Continuum Mechanical Modelling and Simulation -- A.2.1 Introduction -- A.2.2 Phenomenological Observations in Polymer Curing -- A.2.3 One-dimensional Linear Viscoelastic Curing at Small Strains -- A.2.4 Three-dimensional Linear Viscoelastic Curing at Small Strains -- A.2.5 Three-dimensional Curing at Large Strains. , A.2.5.1 Elastic Simulation Framework and Thermodynamic Consistency -- A.2.5.2 Elastic Neo-Hookean Curing Model -- A.2.5.3 Viscoelastic Simulation Framework -- A.2.5.4 Viscoelastic Neo-Hookean Curing Model -- A.2.5.5 The Consideration of Curing Shrinkage -- A.2.6 Material Parameter Evolutions During Curing -- A.2.6.1 Shear Modulus/Second Lamé Parameter -- A.2.6.2 Poisson's Ratio -- A.2.6.3 Bulk Modulus and First Lamé Parameter -- A.2.6.4 Relaxation Time T -- A.2.6.5 Curing Shrinkage s -- A.2.6.6 Degree of Cure -- A.2.7 Epoxy-Ceramics Composite: Photoelasticity and Curing Shrinkage -- Bibliography -- Chapter A.3 Mechanical Interphases in Adhesive Joints: Characterisation Methods and FE-Simulations -- A.3.1 Introduction -- A.3.2 High-Resolution Shear Testing by Scanning Electron Microscopy -- A.3.2.1 Specimen Preparation and Experimental Set-up -- A.3.2.2 Results and Discussion -- A.3.2.3 FE-Simulations of Adhesive Layers with Interphases -- A.3.2.3.1 Simulation Set-up and Mesh Dependency Study -- A.3.2.3.2 Elastic Interphases -- A.3.2.3.3 Elastoplastic Interphases -- A.3.2.4 Can Curing Shrinkage Fake Interphases? -- A.3.3 Nanoindentations Across Adhesive Joints -- A.3.3.1 Introduction and Experimental Data -- A.3.3.2 Determination of Stiffness and Hardness According to Oliver& -- Pharr -- A.3.3.3 FE-Simulations of Nanoindentations Across Adhesive Joints -- A.3.3.3.1 Simulation Set-up -- A.3.3.3.2 Results and Discussion -- A.3.4 Scanning Brillouin Microscopy -- A.3.4.1 Introduction and Experimental Set-up -- A.3.4.2 Results and Discussion -- A.3.5 Conclusions and Outlook -- Acknowledgements -- Bibliography -- Chapter A.4 Fracture Mechanics of Adhesive Joints -- A.4.1 Introduction -- A.4.2 Linear-elastic Fracture Mechanics -- A.4.3 Fracture in Materials with Energy Dissipation. , A.4.4 The Cohesive Zone Model and Fracture of Joints with Toughened Adhesives -- A.4.5 The Micro-structure of Toughened Adhesives -- A.4.6 Conclusions -- Acknowledgements -- References -- Section B Artificial Ageing and Failure of Adhesive Joints -- Chapter B.1 Ageing Phenomena in Polymers: A Short Survey -- B.1.1 What Is Ageing? A Brief Introduction to the Deterioration of Polymers -- B.1.2 Different Types of Polymer Ageing -- B.1.3 Experimental Investigations on the Ageing Behaviour of Polymers -- B.1.4 Influence of Ageing on the Properties of Polymers -- References -- Chapter B.2 Continuum Modelling of Ageing Adhesive Joints -- B.2.1 Outline -- B.2.2 Continuum Mechanics of Single-phase Materials -- B.2.2.1 Kinematics -- B.2.2.2 Balance Equations -- B.2.2.3 Constitutive Equations -- B.2.2.4 Viscoelasticity -- B.2.2.5 Example -- B.2.3 Additional Fields -- B.2.3.1 Diffusion of Tracers -- B.2.3.2 Formation of Interphases -- B.2.4 Summary -- References -- Chapter B.3 Crack Growth in Adhesive Joints: Balance of Energy for Mode I Crack Propagation -- B.3.1 Introduction -- B.3.1.1 Dissipation in TDCB Tests -- B.3.1.2 New Approach -- B.3.2 Estimate of Plastic Work Using Finite Element Simulation -- B.3.2.1 Aim -- B.3.2.2 Tensile Tests and Material Model -- B.3.2.3 Choice of Modelling Method -- B.3.2.4 Simulation and Evaluation of Plastic Strain Energy -- B.3.2.5 Evaluation of TDCB Test Results Using the Simulation -- B.3.3 TDCB Tests with Infrared Camera -- B.3.3.1 Aim and Measurement Principle -- B.3.3.2 Experimental Observations -- B.3.3.3 Thermo-Elastic Effect -- B.3.3.4 Estimate of Generated Heat -- B.3.4 Discussion -- B.3.4.1 Estimate of Energy Balance -- B.3.4.2 Limits of Method and Possible Extensions -- B.3.5 Summary -- Acknowledgement -- References -- Chapter B.4 Joints with a Basic Epoxy Adhesive: Ageing Processes -- B.4.1 Introduction. , B.4.2 Experimental Strategy -- B.4.2.1 Basic Epoxy Adhesive -- B.4.2.2 Metal Substrates -- B.4.2.3 Sample Preparation -- B.4.2.3.1 Bulk Specimens -- B.4.2.3.2 Adhesive Joints -- B.4.2.3.3 Epoxy Curing Protocol -- B.4.2.3.4 Caloric Glass Transition in Cured EP65:35 -- B.4.2.4 Conditions of Artificial Ageing -- B.4.3 Water Diffusion in EP Bulk and Adhesive Joints -- B.4.3.1 Diffusion in Basic Epoxy EP65:35 -- B.4.3.2 Water Concentration Profiles in Adhesive Joints -- B.4.4 Mechanical Properties of Fresh and Aged Adhesive Joints -- B.4.4.1 Tensile Tests for Dry Epoxy Bulk Samples -- B.4.4.2 Shear Tests for Freshly Bonded Joints -- B.4.4.3 Bonded Sample Stiffness and Glass Transition During Ageing -- B.4.5 Chemical Ageing Processes -- B.4.5.1 De-bonding due to Corrosion of the Metal Substrates -- B.4.5.2 Chemical Ageing in Metal Joints Bonded with Basic Adhesive EP65:35 -- B.4.5.3 Chemical Ageing in EP65:35 Bonded Joints - Liquid Water Versus Moist Air -- B.4.5.4 The Role of the Metal Surface -- B.4.6 Chemical Ageing Versus Physical Plasticisation -- B.4.7 Basic Epoxy Versus Commercial Epoxy Adhesives -- B.4.8 Summary and Conclusions -- Acknowledgement -- References -- Chapter B.5 Steel Joints with a Basic Polyurethane Adhesive - Ageing Processes -- B.5.1 Introduction -- B.5.2 PU Adhesive and Sample Preparation -- B.5.2.1 Monomer Mix for the Basic PU Adhesive -- B.5.2.2 PU Bulk Samples and PU-Steel Adhesive Joints -- B.5.3 Artificial Ageing Conditions -- B.5.4 Ageing of Bulk Polyurethane Adhesive PU9010 in Water -- B.5.4.1 Chemical Ageing -- B.5.4.1.1 The Virgin PU9010 Network -- B.5.4.1.2 The Ageing PU9010 Bulk -- B.5.4.1.3 Summary: Chemical Ageing in PU9010 Bulk at Moderate Conditions -- B.5.4.2 Physical Ageing of PU9010 Bulk Samples -- B.5.5 Ageing in Adhesive Joints PU9010-Corundum Blasted Mild Steel S235. , B.5.5.1 Water Diffusion in the Adhesive Joint -- B.5.5.2 Chemical Ageing in the Adhesive Joint -- B.5.5.2.1 Corrosive Attack on the Corundum Blasted Steel in the Adhesive Joint -- B.5.5.2.2 Chemical Ageing of PU9010 in the Adhesive Joint with Steel S235 -- B.5.5.3 Physical Ageing in the Adhesive Joint PU9010-Corundum Blasted Steel S235 -- B.5.5.3.1 Caloric Glass Transition in the Adhesive Joint -- B.5.5.3.2 Mechanical Modulus in the Adhesive Joint - Evolution During Artificial Ageing -- B.5.6 Conclusions -- Acknowledgement -- References -- Chapter B.6 Viscoelasticity in Ageing Joints - Experiments and Simulation -- B.6.1 Motivation -- B.6.2 Transport Processes in Adhesives -- B.6.2.1 Fick's Law of Diffusion -- B.6.2.2 Langmuir-type of Diffusion -- B.6.3 Constitutive Equations -- B.6.3.1 Temperature -- B.6.3.2 Water in the Adhesive -- B.6.3.3 Chemical Ageing -- B.6.3.4 Size Effects -- B.6.3.5 Damage Evolution Model -- B.6.4 Data Evaluation and Results -- B.6.4.1 Data Evaluation -- B.6.4.2 Results - Polyurethane Adhesive -- B.6.4.2.1 Basic Elasticity -- B.6.4.2.2 Viscoelasticity -- B.6.4.3 Results - Epoxy Adhesive -- B.6.5 Summary -- References -- Chapter B.7 On the Energy Release Rate of Aged Adhesive Joints -- B.7.1 Introduction -- B.7.2 Experimental and Definitions -- B.7.3 Ageing of Polyurethane Adhesive Joints -- B.7.4 Ageing of Epoxy Adhesive Joints -- B.7.5 Summary and Conclusions -- Acknowledgements -- References -- Chapter B.8 Cohesive Zone Model for Moist Adhesive Joints -- B.8.1 Introduction -- B.8.2 Transfer from Continuum to Cohesive Zone Model -- B.8.2.1 Viscoelasticity -- B.8.2.2 Damage Behaviour -- B.8.2.3 Validation -- B.8.2.3.1 Tensile Tests of Butt Joints -- B.8.2.3.2 Validation of the Viscoelastic Model -- B.8.2.3.3 Validation of Transfer to Cohesive Zone Model and Damage Model -- B.8.3 Simulation of Diffusion. , B.8.3.1 Finite Element Simulation of Diffusion.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Fresenius' Zeitschrift für analytische Chemie 344 (1992), S. 199-202 
    ISSN: 1618-2650
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary A program was developed for IBM-compatible personal computers to separate the peaks of XPS spectra using a Gauss/Lorentz product or a Gauss/Doniach-Sunic model function. The background is removed by common methods.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...