GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Chadburn, Sarah; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W; Peng, Shushi; van Huissteden, Jacobus (Ko); Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J (2017): Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences, 14(22), 5143-5169, https://doi.org/10.5194/bg-14-5143-2017
    Publication Date: 2024-05-18
    Description: These data represent five high-latitude sites studied in the PAGE21 project (https://www.page21.eu): Samoylov, Kytalyk, Abisko, Zackenberg and Bayelva. Please see the linked manuscript for details of the sites. These are meteorological driving data, which were prepared using observations from the sites combined with reanalysis data for the grid cell containing the site. For the period 1901-1979, Water and Global Change forcing data (WFD) were used (Weedon et al., 2011). This has half-degree resolution for the whole globe at 3-hourly time resolution from 1901 to 2001. For the period 1979-2014, WATCH-ForcingData-ERA-Interim (WFDEI) was used (Weedon, 2013). For the time periods in which observed data were available, correction factors were generated by calculating monthly biases relative to the WFDEI data. These corrections were then applied to the time series from 1979 to 2014 of the WFDEI data. The WFD before 1979 were then corrected to match these data and the two datasets were joined at 1979 to provide gap-free 3-hourly forcing from 1901 to 2014. Local meteorological station observations were used for all variables except snowfall, which was estimated from the observed snow depth by treating increases in snow depth as snowfall events with an assumed snow density. See linked manuscript for more details.
    Keywords: air temperature; Arctic Tundra; Changing Permafrost in the Arctic and its Global Effects in the 21st Century; humidity; longwave radiation; PAGE21; precipitation; shortwave radiation; surface pressure; wind speed
    Type: Dataset
    Format: application/zip, 104 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-19
    Description: Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...