GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
  • 1
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The time-dependent variability of the North Atlantic Oscillation is examined in an observational data set and several model data sets with greenhouse-gas-induced external forcings. The index of the North Atlantic Oscillation state is derived from the time series of mean latitudinal position and central pressure of the Icelandic Low and the Azores High considering the synchronous meridional shifting of the two pressure systems. While the North Atlantic Oscillation is characterized by intensive interannual variability, the low-pass filtered index time series shows a decadal component with a time scale of about 50 y within almost 120 y of observation. Since the late 1960s we observe a positive trend and a transition to a strong positive phase of the phenomenon indicative of a pre-dominantly zonal circulation over the North Atlantic. This trend occurs equally in the observations and all examined model data sets with increasing greenhouse-gas-concentration and atmosphere-ocean coupling. We find statistical evidence that the radiative forcing by increasing CO2 concentration has a significant influence on the simulated variability of the North Atlantic Oscillation on time scales of 60 y and longer, independent of the initial conditions and the model version. The seasonal response is strongest in late summer and winter. The interannual variability of the North Atlantic Oscillation states on time scales less than 10 y decreases synchronously with the positive trend of its decadal-mean state implying a stabilization of its present and future zonal state.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  [Talk] In: 4. ICTP Workshop on the Theory & Use of Regional Climate Models Applying RCMs to Developing Nations in Support of Climate Change Assessment & Extended-Range Prediction, 03.-11.03.2008, Trieste, Italy .
    Publication Date: 2016-10-05
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  Climate Dynamics, 21 . pp. 63-75.
    Publication Date: 2016-09-13
    Description: Recent studies have suggested that sea surface temperature (SST) is an important source of variability of the North Atlantic Oscillation (NAO). Here, we deal with four basic aspects contributing to this issue: (1) we investigate the characteristic time scales of this oceanic influence; (2) quantify the scale-dependent hindcast potential of the NAO during the twentieth century as derived from SST-driven atmospheric general circulation model (AGCM) ensembles; (3) the relevant oceanic regions are identified, corresponding SST indices are defined and their relationship to the NAO are evaluated by means of cross spectral analysis and (4) our results are compared with long-term coupled control experiments with different ocean models in order to ensure whether the spectral relationship between the SST regions and the NAO is an intrinsic mode of the coupled climate system, involving the deep ocean circulation, rather than an artefact of the unilateral SST forcing. The observed year-to-year NAO fluctuations are barely influenced by the SST. On the decadal time scales the major swings of the observed NAO are well reproduced by various ensembles from the middle of the twentieth century onward, including the negative state in the 1960s and part of the positive trend afterwards. A six-member ECHAM4-T42 ensemble reveals that the SST boundary condition affects 25% of total decadal-mean and interdecadal-trend NAO variability throughout the twentieth century. The most coherent NAO-related SST feature is the well-known North Atlantic tripole. Additional contributions may arise from the southern Pacific and the low-latitude Indian Ocean. The coupled climate model control runs suggest only the North Atlantic SST-NAO relationship as being a true characteristic of the coupled climate system. The coherence and phase spectra of observations and coupled simulations are in excellent agreement, confirming the robustness of this decadal-scale North Atlantic air–sea coupled mode.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: The West African monsoon rainfall is essential for regional food production, and decadal predictions are necessary for policy makers and farmers. However, predictions with global climate models reveal precipitation biases. This study addresses the hypotheses that global prediction biases can be reduced by dynamical downscaling with a multimodel ensemble of three regional climate models (RCMs), a RCM coupled to a global ocean model and a RCM applying more realistic soil initialization and boundary conditions, i.e., aerosols, sea surface temperatures (SSTs), vegetation, and land cover. Numerous RCM predictions have been performed with REMO, COSMO-CLM (CCLM), and Weather Research and Forecasting (WRF) in various versions and for different decades. Global predictions reveal typical positive and negative biases over the Guinea Coast and the Sahel, respectively, related to a southward shifted Intertropical Convergence Zone (ITCZ) and a positive tropical Atlantic SST bias. These rainfall biases are reduced by some regional predictions in the Sahel but aggravated by all RCMs over the Guinea Coast, resulting from the inherited SST bias, increased westerlies and evaporation over the tropical Atlantic and shifted African easterly waves. The coupled regional predictions simulate high-resolution atmosphere-ocean interactions strongly improving the SST bias, the ITCZ shift and the Guinea Coast and Central Sahel precipitation biases. Some added values in rainfall bias are found for more realistic SST and land cover boundary conditions over the Guinea Coast and improved vegetation in the Central Sahel. Thus, the ability of RCMs and improved boundary conditions to reduce rainfall biases for climate impact research depends on the considered West African region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...