GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Okazaki, Remy; Towle, Erica K; van Hooidonk, Ruben; Mor, Carolina; Winter, Rivah N; Piggot, Alan M; Cunning, Ross; Baker, Andrew; Klaus, James S; Swart, Peter K; Langdon, Chris (2016): Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Global Change Biology, https://doi.org/10.1111/gcb.13481
    Publication Date: 2024-03-15
    Description: Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. In order to address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27°C, 30.3°C) and CO2 partial pressures (pCO2) (400, 900, 1300 µatm). Mixed effects models of calcification for each species were then used to project community-level scleractinian calcification using Florida Keys reef composition data and IPCC AR5 ensemble climate model data. Three of the four most abundant species, Orbicella faveolata, Montastraea cavernosa, and Porites astreoides, had negative calcification responses to both elevated temperature and pCO2. In the business-as-usual CO2 emissions scenario, reefs with high abundances of these species had projected end-of-century declines in scleractinian calcification of 〉50% relative to present-day rates. Siderastrea siderea, the other most-common species, was insensitive to both temperature and pCO2 within the levels tested here. Reefs dominated by this species had the most stable end-of-century growth. Under more optimistic scenarios of reduced CO2 emissions, calcification rates throughout the Florida Keys declined 〈20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10 to 100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species like S. siderea are not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reduced CO2 emissions can limit future declines in reef calcification.
    Keywords: Acropora cervicornis; Agaricia agaricites; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Cnidaria; Coast and continental shelf; Colony number/ID; Comment; Containers and aquaria (20-1000 L or 〈 1 m**2); Coulometry; Dichocoenia stokesii; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Location; Montastraea cavernosa; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Orbicella faveolata; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Porites astreoides; Porites divaricata; Potentiometric titration; Pseudodiploria clivosa; Pseudodiploria strigosa; Registration number of species; Salinity; Salinity, standard deviation; Siderastrea radians; Siderastrea siderea; Solenastrea hyades; Species; Species interaction; Temperate; Temperature; Temperature, standard deviation; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 37859 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fabricius, Katharina Elisabeth; Langdon, Chris; Uthicke, Sven; Humphrey, Craig; Noonan, Sam; De'ath, Glenn; Okazaki, Remy; Muehllehner, Nancy; Glas, Martin S; Lough, Janice M (2011): Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change, 1(3), 165-169, https://doi.org/10.1038/nclimate1122
    Publication Date: 2024-03-19
    Description: Experiments have shown that ocean acidification due to rising atmospheric carbon dioxide concentrations has deleterious effects on the performance of many marine organisms. However, few empirical or modelling studies have addressed the long-term consequences of ocean acidification for marine ecosystems. Here we show that as pH declines from 8.1 to 7.8 (the change expected if atmospheric carbon dioxide concentrations increase from 390 to 750 ppm, consistent with some scenarios for the end of this century) some organisms benefit, but many more lose out. We investigated coral reefs, seagrasses and sediments that are acclimatized to low pH at three cool and shallow volcanic carbon dioxide seeps in Papua New Guinea. At reduced pH, we observed reductions in coral diversity, recruitment and abundances of structurally complex framework builders, and shifts in competitive interactions between taxa. However, coral cover remained constant between pH 8.1 and ~7.8, because massive Porites corals established dominance over structural corals, despite low rates of calcification. Reef development ceased below pH 7.7. Our empirical data from this unique field setting confirm model predictions that ocean acidification, together with temperature stress, will probably lead to severely reduced diversity, structural complexity and resilience of Indo-Pacific coral reefs within this century.
    Keywords: Alkalinity, total; Aragonite saturation state; Areal density; Benthos; Bicarbonate ion; Biomass; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, total; Carbon, organic, total; Carbonate ion; Carbonate system computation flag; Carbon dioxide; CO2 vent; Coast and continental shelf; Community composition and diversity; Coulometric titration; Coverage; Density, faunal; Density, skeletal bulk; Description; Entire community; Epibionts; Field observation; Foraminifera; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Linear extension; Nitrogen, total, particulate; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Pigmentation, color chart score; Potentiometric; Potentiometric titration; Rocky-shore community; Salinity; Shannon Diversity Index; South Pacific; Species richness; Temperature, water; Thickness; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 760 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Okazaki, Remy; Swart, Peter K; Langdon, Chris (2013): Stress-tolerant corals of Florida Bay are vulnerable to ocean acidification. Coral Reefs, 32(3), 671-683, https://doi.org/10.1007/s00338-013-1015-3
    Publication Date: 2024-03-15
    Description: In situ calcification measurements tested the hypothesis that corals from environments (Florida Bay, USA) that naturally experience large swings in pCO2 and pH will be tolerant or less sensitive to ocean acidification than species from laboratory experiments with less variable carbonate chemistry. The pCO2 in Florida Bay varies from summer to winter by several hundred ppm roughly comparable to the increase predicted by the end of the century. Rates of net photosynthesis and calcification of two stress-tolerant coral species, Siderastrea radians and Solenastrea hyades, were measured under the prevailing ambient chemical conditions and under conditions amended to simulate a pH drop of 0.1-0.2 units at bimonthly intervals over a 2-yr period. Net photosynthesis was not changed by the elevation in pCO2 and drop in pH; however, calcification declined by 52 and 50 % per unit decrease in saturation state, respectively. These results indicate that the calcification rates of S. radians and S. hyades are just as sensitive to a reduction in saturation state as coral species that have been previously studied. In other words, stress tolerance to temperature and salinity extremes as well as regular exposure to large swings in pCO2 and pH did not make them any less sensitive to ocean acidification. These two species likely survive in Florida Bay in part because they devote proportionately less energy to calcification than most other species and the average saturation state is elevated relative to that of nearby offshore water due to high rates of primary production by seagrasses.
    Keywords: Alkalinity, total; Alkalinity anomaly technique (Smith and Key, 1975); Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Date; Field experiment; Florida; Florida_bay; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Net photosynthesis rate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Salinity; Siderastrea radians; Single species; Solenastrea hyades; Species; Surface area; Temperate; Temperature, water; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 2975 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-16
    Description: Experiments have shown that ocean acidification due to rising atmospheric carbon dioxide concentrations has deleterious effects on the performance of many marine organisms(1-4). However, few empirical or modelling studies have addressed the long-term consequences of ocean acidification for marine ecosystems(5-7). Here we show that as pH declines from 8.1 to 7.8 (the change expected if atmospheric carbon dioxide concentrations increase from 390 to 750 ppm, consistent with some scenarios for the end of this century) some organisms benefit, but many more lose out. We investigated coral reefs, seagrasses and sediments that are acclimatized to low pH at three cool and shallow volcanic carbon dioxide seeps in Papua New Guinea. At reduced pH, we observed reductions in coral diversity, recruitment and abundances of structurally complex framework builders, and shifts in competitive interactions between taxa. However, coral cover remained constant between pH 8.1 and similar to 7.8, because massive Porites corals established dominance over structural corals, despite low rates of calcification. Reef development ceased below pH 7.7. Our empirical data from this unique field setting confirm model predictions that ocean acidification, together with temperature stress, will probably lead to severely reduced diversity, structural complexity and resilience Of Indo-Pacific coral reefs within this century
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...