GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2024-04-10
    Description: The long-term dynamics of microbial communities across geographic, hydrographic, and biogeochemical gradients in the Arctic Ocean are largely unknown. To address this, we annually sampled polar, mixed, and Atlantic water masses of the Fram Strait (2015–2019; 5–100 m depth) to assess microbiome composition, substrate concentrations, and oceanographic parameters. Longitude and water depth were the major determinants (~30%) of microbial community variability. Bacterial alpha diversity was highest in lower-photic polar waters. Community composition shifted from west to east, with the prevalence of, for example, Dadabacteriales and Thiotrichales in Arctic- and Atlantic-influenced waters, respectively. Concentrations of dissolved organic carbon peaked in the western, compared to carbohydrates in the chlorophyll-maximum of eastern Fram Strait. Interannual differences due to the time of sampling, which varied between early (June 2016/2018) and late (September 2019) phytoplankton bloom stages, illustrated that phytoplankton composition and resulting availability of labile substrates influence bacterial dynamics. We identified 10 species clusters with stable environmental correlations, representing signature populations of distinct ecosystem states. In context with published metagenomic evidence, our microbial-biogeochemical inventory of a key Arctic region establishes a benchmark to assess ecosystem dynamics and the imprint of climate change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-09-07
    Description: Bacterial diversity and function across time and space in the Arctic Ocean, including the Polar Night, remain virtually unknown. In the FRAM Observatory, we study microbial composition and genetic potential in ice-covered and ice-free regions of the Fram Strait, the major gateway between the Arctic and Atlantic Oceans. A continuous amplicon time-series, derived from moored autonomous samplers, revealed marked taxonomic and functional seasonality among bacterial communities in the ice-free West Spitsbergen Current, with distinct succession of taxonomic modules. PacBio long-read metagenomes showed peaks of proteorhodopsin- and DMSP-utilizing genes in late summer, whereas winter mixing of the water column covaried with ammonia- and nitrite-metabolizing bacterial genes. In the ice-covered East Greenland Current, taxonomic and functional diversity varied less with seasons, with prominent influence of ice cover and polar water masses. For instance, high-ice conditions coincided with higher number of peptidoglycan-utilizing genes. Continuous observations were contextualized with five-year amplicon data from summertime samples collected across Fram Strait, integrating seasonal and interannual patterns of bacterial community dynamics. This fundamental baseline information helps understanding ecological and biogeochemical processes in a marine region severely affected by climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed , info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-19
    Description: The long-term dynamics of microbial communities across geographic, hydrographic, and biogeochemical gradients in the Arctic Ocean are largely unknown. To address this, we annually sampled polar, mixed, and Atlantic water masses of the Fram Strait (2015–2019; 5–100 m depth) to assess microbiome composition, substrate concentrations, and oceanographic parameters. Longitude and water depth were the major determinants (~30%) of microbial community variability. Bacterial alpha diversity was highest in lower-photic polar waters. Community composition shifted from west to east, with the prevalence of, for example, Dadabacteriales and Thiotrichales in Arctic- and Atlantic-influenced waters, respectively. Concentrations of dissolved organic carbon peaked in the western, compared to carbohydrates in the chlorophyll-maximum of eastern Fram Strait. Interannual differences due to the time of sampling, which varied between early (June 2016/2018) and late (September 2019) phytoplankton bloom stages, illustrated that phytoplankton composition and resulting availability of labile substrates influence bacterial dynamics. We identified 10 species clusters with stable environmental correlations, representing signature populations of distinct ecosystem states. In context with published metagenomic evidence, our microbial-biogeochemical inventory of a key Arctic region establishes a benchmark to assess ecosystem dynamics and the imprint of climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...