GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-10-24
    Description: During opening of a new ocean magma intrudes into the surrounding sedimentary basins. Heat provided by the intrusions matures the host rock creating metamorphic aureoles potentially releasing large amounts of hydrocarbons. These hydrocarbons may migrate to the seafloor in hydrothermal vent complexes in sufficient volumes to trigger global warming, e.g. during the Paleocene Eocene Thermal Maximum (PETM). Mound structures at the top of buried hydrothermal vent complexes observed in seismic data off Norway were previously interpreted as mud volcanoes and the amount of released hydrocarbon was estimated based on this interpretation. Here, we present new geophysical and geochemical data from the Gulf of California suggesting that such mound structures could in fact be edifices constructed by the growth of black-smoker type chimneys rather than mud volcanoes. We have evidence for two buried and one active hydrothermal vent system outside the rift axis. The vent releases several hundred degrees Celsius hot fluids containing abundant methane, mid-ocean-ridge-basalt (MORB)-type helium, and precipitating solids up to 300 m high into the water column. Our observations challenge the idea that methane is emitted slowly from rift-related vents. The association of large amounts of methane with hydrothermal fluids that enter the water column at high pressure and temperature provides an efficient mechanism to transport hydrocarbons into the water column and atmosphere, lending support to the hypothesis that rapid climate change such as during the PETM can be triggered by magmatic intrusions into organic-rich sedimentary basins.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-22
    Description: Rift-related magmatism in the Guaymas Basin, Gulf of California induces hydrothermal activity within the basin sediments. Mobilized fluids migrate to the seafloor where they are emitted into the water column changing ocean chemistry and fuelling chemosynthetic ecosystems. New seismic and geochemical data from the northern rift arm of the Guaymas Basin document the variety of fluid expulsion phenomena from large-scale subsurface sediment mobilization related to contact metamorphosis to focused small-scale structures. The geochemical composition of emitted fluids depends largely on the age of the fluid escape structures with respect to the underlying intrusions. Whereas, old structures are dominated by methane emission, young vent sites are characterized by hot fluids that carry a wide range of minerals in solution. The overall high geothermal gradient within the basin (mainly between 160 and 260 °C/km) leads to a thin gas hydrate stability zone. Thus, deep hydrothermal fluid advection affects the gas hydrate system and makes it more dynamic than in colder sedimentary basins.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Seafloor heat flow provides information about the thermal evolution of the lithosphere, the magnitude and timing of volcanic activity, and hydrothermal circulation patterns. In the central Gulf of California, the Guaymas Basin is part of a young marginal spreading rift system that experiences high sedimentation (1–5 km/Myr) and widespread magmatic intrusions in the axial troughs and the off-axis regions. Heat flow variations record magmatic and sedimentary processes affecting the thermal evolution of the basin. Here, we present new seismic evidence of a widespread bottom-simulating reflection (BSR) in the northwestern Guaymas Basin. Using the BSR depths and thermal conductivity measurements, we determine geothermal gradient and surface heat flow variations. The BSR-derived heat flow values are less than the conductive lithospheric heat flow predictions for mid-oceanic ridges. They suggest that high sedimentation (0.3–1 km/Myr) suppresses the lithospheric heat flow. In the central and southeastern regions of the basin, the BSR-derived geothermal gradient increases as the intruded magmatic units reach shallower subsurface depths. Thermal modeling shows that recent (〈5000 years) igneous intrusions (〈500 m below the seafloor) and associated fluid flow elevate the surface heat flow up to five times. BSR-derived geothermal gradients correlate little with the depth of the shallowest magmatic emplacements to the north, where the intrusions have already cooled for some time, and the associated hydrothermal activity is about to shut down. Key Points - A regional bottom-simulating reflection (BSR) in the Guaymas Basin indicates a widespread occurrence of gas hydrates - The BSR derived thermal gradients show wavy patterns farther away from the spreading centre, indicating strong lateral heat flow variations - High sedimentation suppresses heat flow, while recent magmatic intrusion and fluid advection increase heat flow
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-08-23
    Description: During opening of a new ocean, magma intrudes into the surrounding sedimentary basins. Heat provided by the intrusions matures the host rock, creating metamorphic aureoles potentially releasing large amounts of hydrocarbons. These hydrocarbons may migrate to the seafloor in hydrothermal vent complexes in sufficient volumes to trigger global warming, e.g., during the Paleocene-Eocene Thermal Maximum (PETM). Mound structures at the top of buried hydrothermal vent complexes observed in seismic data off Norway were previously interpreted as sediment volcanoes, and the amount of released hydrocarbon was estimated based on this interpretation. Here, we present new geophysical and geochemical data from the Gulf of California suggesting that such mound structures could in fact be edifices constructed by the growth of black smoker–type chimneys rather than sediment volcanoes. We have evidence for two buried and one active hydrothermal vent systems outside the rift axis. The active vent releases fluids of several hundred degrees Celsius containing abundant methane, mid-ocean ridge basalt–type helium, and precipitating solids up to 300 m high into the water column. Our observations challenge the idea that methane is emitted slowly from rift-related vents. The association of large amounts of methane with hydrothermal fluids that enter the water column at high pressure and temperature provides an efficient mechanism to transport hydrocarbons into the water column and atmosphere, lending support to the hypothesis that rapid climate change such as during the PETM can be triggered by magmatic intrusions into organic-rich sedimentary basins.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...