GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Nicotinic receptors are present in the chick retina, but their structure and functional characteristics are still unclear. Using anti-α7 and anti-α8 subunit-specific antibodies, we immunopurified the α7 and α8 subtypes of chick retina neuronal nicotinic receptors. When analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, the two purified subtypes consistently showed a similar peptide composition characterized by the presence of two major peptides of Mr 58 ± 1 and 54 ± 1 kDa, and two minor peptides of 67 and 61 ± 1 kDa. In the α7 subtype, the 58 kDa peptide was recognized by anti-α7 but not by anti-α8 antibodies; in the α8 subtype, the 58 kDa peptide was recognized only by anti-α8 antibodies. The α7 subtype had a single class of [125]a-bungarotoxin binding sites with a KD value of 1.2 nM, whereas the purified α8 subtype had two classes of binding sites, one with a KD of 5.5 nM and the other with very high affinity (KD 52 pM), but present in only 8% of the receptors. Competition binding experiments also showed the presence on the α8 subtype of highand low-affinity classes of binding sites; the affinity for cholinergic drugs of the former was greater than that of the single class present on the α7 subtype. When reconstituted in planar lipid bilayers, both subtypes formed ligand-gated cation channels with major conductance levels of 42 and 52 pS but with different lifetimes; the two channels were activated by agonists and blocked by d-tubocurarine and the glycinergic antagonist strychnine. In line with the binding data, the reconstituted α8 subtype had greater agonist sensitivity than the α7 subtype.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: During the winter 2012, from 20 January to 4 February, the German oceanographic FS METEOR cruise (M86/3) took place in the central-southern Adriatic Sea in the frame of “Adria LithosPHere InvestigAtion” (ALPHA [Kopp et al., 2013]). The primary goal of the project was high-resolution tomographic imaging of the crust and lithospheric mantle underneath the southern Adriatic Sea, the Apulia eastern margin and the external zone of the Dinaric thrust-belt by collecting offshore-onshore seismic data along three multi-fold wide-aperture profiles. The definition of reliable velocity models of the Adriatic lithosphere was considered crucial for a better understanding of the structure, fragmentation, geodynamic evolution, and seismotectonics of the Adria-Apulia microplates. The ALPHA Project was coordinated by Helmholtz Centre for Ocean Research Kiel, Germany (GEOMAR), former Leibniz Institute of Marine Sciences (German: Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR) and conducted in close cooperation with different European institutions of Germany, Albania, Croatia, Italy and Montenegro. The Istituto Nazionale di Geofisica Vulcanologia (INGV) participated by deploying land stations along two transects in the Apulia and Gargano Promontory to extend westwards the seismic profiles. The primary goal was to record shallow-to-deep seismic phases travelling along the transition between the Adriatic basin and the Apulia foreland. In this paper we present the field work related to the two Italian onshore transects, the recorded data, and the processing flow developed to highlight crustal and mantle refractions and wide-angle reflections.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-11
    Description: Keypoints This contribution is a reply on a comment submitted by A. Argnani. The alternate interpretation of the wide-angle seismic model is discussed. The Alfeo Fault system is proposed to be the current location of STEP fault. Abstract Andrea Argnani in his comment on Dellong et al., 2020 (Geometry of the deep Calabrian subduction (Central Mediterranean Sea) from wide‐angle seismic data and 3D gravity modeling), proposes an alternate interpretation of the wide-angle seismic velocity models presented by Dellong et al., 2018 and Dellong et al., 2020 and proposes a correction of the literature citations in these paper. In this reply, we discuss in detail all points raised by Andrea Argnani.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-15
    Description: Laser reflectometry (BOTDR), commonly used for structural health monitoring (bridges, dams, etc.), for the first time is being tested to study movements of an active fault on the seafloor, 25 km offshore Catania Sicily (an urban area of 1 million people). Under ideal conditions, this technique can measure small strains (10E-6), across very large distances (10 - 200 km) and locate these strains with a spatial resolution of 10 - 50 m. As the first experiment of the European funded FOCUS project (ERC Advanced Grant), in late April 2020 we aimed to connect and deploy a dedicated 6-km long strain cable to the TSS (Test Site South) seafloor observatory in 2100 m water depth operated by INFN-LNS (Italian National Physics Institute). The work plan for the marine expedition FocusX1 onboard the research vessel PourquoiPas? is described here. First, microbathymetric mapping and a video camera survey are performed by the ROV Victor6000. Then, several intermediate junction frames and short connector cables (umbilicals) are connected. A cable-end module and 6-km long fiber-optic strain cable (manufactured by Nexans Norway) is then connected to the new junction box. Next, we use a deep-water cable-laying system with an integrated plow (updated Deep Sea Net design Ifremer, Toulon) to bury the cable 20 cm in the soft sediments in order to increase coupling between the cable and the seafloor. The targeted track for the cable crosses the North Alfeo Fault at three locations. Laser reflectometry measurements began April 2020 and will be calibrated by a three-year deployment of seafloor geodetic instruments (Canopus acoustic beacons manufactured by iXblue) also started April 2020, to quantify relative displacement across the fault. During a future marine expedition, tentatively scheduled for 2021 (FocusX2) a passive seismological experiment is planned to record regional seismicity. This will involve deployment of a temporary network of OBS (Ocean Bottom Seismometers) on the seafloor and seismic stations on land, supplemented by INGV permanent land stations. The simultaneous use of laser reflectometry, seafloor geodetic stations as well as seismological land and sea stations will provide an integrated system for monitoring a wide range of types of slipping events along the North Alfeo Fault (e.g. - creep, slow-slip, rupture). A long-term goal is the development of dual-use telecom cables with industry partners.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: The Calabrian subduction zone is one of the narrowest arcs on Earth and a key area to understand the geodynamic evolution of the Mediterranean and other marginal seas. Here in the Ionian Sea, the African plate subducts beneath Eurasia. Imaging the boundary between the downgoing slab and the upper plate along the Calabrian subduction zone is important for assessing the potential of the subduction zone to generate mega‐thrust earthquakes and was the main objective of this study. Here we present and analyze the results from a 380 km long, wide‐angle seismic profile spanning the complete subduction zone, from the deep Ionian Basin and the accretionary wedge to NE Sicily, with additional constraints offered by 3‐D Gravity modeling and the analysis of earthquake hypocenters. The velocity model for the wide‐angle seismic profile images thin oceanic crust throughout the basin. The Calabrian backstop extends underneath the accretionary wedge to about 100 km SE of the coast. The seismic model was extended in depth using earthquake hypocenters. The combined results indicate that the slab dip increases abruptly from 2‐3° to 60‐70° over a distance of ≤50 km underneath the Calabrian backstop. This abrupt steepening is likely related to the roll‐back geodynamic evolution of the narrow Calabrian slab which shows great similarity to the shallow and deep geometry of the Gibraltar slab.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: The dense AlpArray network allows studying seismic wave propagation with high spatial resolution. Here we introduce an array approach to measure arrival angles of teleseismic Rayleigh waves. The approach combines the advantages of phase correlation as in the two-station method with array beamforming to obtain the phase-velocity vector. 20 earthquakes from the first two years of the AlpArray project are selected, and spatial patterns of arrival-angle deviations across the AlpArray are shown in maps, depending on period and earthquake location. The cause of these intriguing spatial patterns is discussed. A simple wave-propagation modelling example using an isolated anomaly and a Gaussian beam solution suggests that much of the complexity can be explained as a result of wave interference after passing a structural anomaly along the wave paths. This indicates that arrival-angle information constitutes useful additional information on the Earth structure, beyond what is currently used in inversions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: We present a new 3-D shear-velocity model for the top 30 km of the crust in the wider Vienna Basin region based on surface waves extracted from ambient-noise cross-correlations. We use continuous seismic records of 63 broad-band stations of the AlpArray project to retrieve interstation Green’s functions from ambient-noise cross-correlations in the period range from 5 to 25 s. From these Green’s functions, we measure Rayleigh group traveltimes, utilizing all four components of the cross-correlation tensor, which are associated with Rayleigh waves (ZZ, RR, RZ and ZR), to exploit multiple measurements per station pair. A set of selection criteria is applied to ensure that we use high-quality recordings of fundamental Rayleigh modes. We regionalize the interstation group velocities in a 5 km × 5 km grid with an average path density of ∼20 paths per cell. From the resulting group-velocity maps, we extract local 1-D dispersion curves for each cell and invert all cells independently to retrieve the crustal shear-velocity structure of the study area. The resulting model provides a previously unachieved lateral resolution of seismic velocities in the region of ∼15 km. As major features, we image the Vienna Basin and Little Hungarian Plain as low-velocity anomalies, and the Bohemian Massif with high velocities. The edges of these features are marked with prominent velocity contrasts correlated with faults, such as the Alpine Front and Vienna Basin transfer fault system. The observed structures correlate well with surface geology, gravitational anomalies and the few known crystalline basement depths from boreholes. For depths larger than those reached by boreholes, the new model allows new insight into the complex structure of the Vienna Basin and surrounding areas, including deep low-velocity zones, which we image with previously unachieved detail. This model may be used in the future to interpret the deeper structures and tectonic evolution of the wider Vienna Basin region, evaluate natural resources, model wave propagation and improve earthquake locations, among others.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-05-28
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-09
    Description: In the Ionian Sea (central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust of the subducting plate remains debated and could represent the last remnants of the Neo‐Tethys ocean. The origin of the Ionian basin is also under discussion, especially concerning the rifting mechanisms as the Malta Escarpment could represent a remnant of this opening. This subduction retreats toward the south‐east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian basin. A major lateral slab tear fault is required to accommodate the slab roll‐back. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the eastern Sicily margin and the Malta Escarpment. We present two two‐dimensional P wave velocity models obtained from forward modeling of wide‐angle seismic data acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment, which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: We present the results of P-to-S receiver function analysis to improve the 3D image of the sedimentary layer, the upper crust, and lower crust in the Pannonian Basin area. The Pannonian Basin hosts deep sedimentary depocentres superimposed on a complex basement structure and it is surrounded by mountain belts. We processed waveforms from 221 three-component broadband seismological stations. As a result of the dense station coverage, we were able to achieve so far unprecedented spatial resolution in determining the velocity structure of the crust. We applied a three-fold quality control process; the first two being applied to the observed waveforms and the third to the calculated radial receiver functions. This work is the first comprehensive receiver function study of the entire region. To prepare the inversions, we performed station-wise H-Vp/Vs grid search, as well as Common Conversion Point migration. Our main focus was then the S-wave velocity structure of the area, which we determined by the Neighborhood Algorithm inversion method at each station, where data were sub-divided into back-azimuthal bundles based on similar Ps delay times. The 1D, nonlinear inversions provided the depth of the discontinuities, shear-wave velocities and Vp/Vs ratios of each layer per bundle, and we calculated uncertainty values for each of these parameters. We then developed a 3D interpolation method based on natural neighbor interpolation to obtain the 3D crustal structure from the local inversion results. We present the sedimentary thickness map, the first Conrad depth map and an improved, detailed Moho map, as well as the first upper and lower crustal thickness maps obtained from receiver function analysis. The velocity jump across the Conrad discontinuity is estimated at less than 0.2 km/s over most of the investigated area. We also compare the new Moho map from our approach to simple grid search results and prior knowledge from other techniques. Our Moho depth map presents local variations in the investigated area: the crust-mantle boundary is at 20–26 km beneath the sedimentary basins, while it is situated deeper below the Apuseni Mountains, Transdanubian and North Hungarian Ranges (28–33 km), and it is the deepest beneath the Eastern Alps and the Southern Carpathians (40–45 km). These values reflect well the Neogene evolution of the region, such as crustal thinning of the Pannonian Basin and orogenic thickening in the neighboring mountain belts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...