GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-25
    Description: Maritime boundary‐layer clouds over the Southern Ocean (SO) have a large shortwave radiative effect. Yet, climate models have difficulties in representing these clouds and, especially, their phase in this observationally sparse region. This study aims to increase the knowledge of SO cloud phase by presenting in‐situ cloud microphysical observations from the Southern Ocean Clouds, Radiation, Aerosol, Transport Experimental Study (SOCRATES). We investigate the occurrence of ice in summertime marine stratocumulus and cumulus clouds in the temperature range between 6 and −25°C. Our observations show that in ice‐containing clouds, maximum ice number concentrations of up to several hundreds per liter were found. The observed ice crystal concentrations were on average one to two orders of magnitude higher than the simultaneously measured ice nucleating particle (INP) concentrations in the temperature range below −10°C and up to five orders of magnitude higher than estimated INP concentrations in the temperature range above −10°C. These results highlight the importance of secondary ice production (SIP) in SO summertime marine boundary‐layer clouds. Evidence for rime splintering was found in the Hallett‐Mossop (HM) temperature range but the exact SIP mechanism active at lower temperatures remains unclear. Finally, instrument simulators were used to assess simulated co‐located cloud ice concentrations and the role of modeled HM rime‐splintering. We found that CAM6 is deficient in simulating number concentrations across the HM temperature range with little sensitivity to the model HM process, which is inconsistent with the aforementioned observational evidence of highly active SIP processes in SO low‐level clouds.
    Description: Plain Language Summary: Clouds in the Southern Ocean are important for climate but not well represented in climate models. Observations in this remote region have been rare. This study presents results from a recent airborne campaign that took place in the Southern Ocean where low‐ and mid‐level clouds were investigated by detecting individual cloud particles within the clouds. Although large fraction of the observed clouds did not contain ice crystals, occasionally high amounts of ice crystals were observed that cannot be explained by ice formation on aerosol particles but were result of multiplication of existing ice crystals. We tested the capability of a commonly used climate model to represent the observed ice concentrations and their sensitivity to one ice multiplication process parameterized in the model. These investigations revealed that the in the model the ice multiplication process was not responsible for generation of ice, which is in contradiction with the observations.
    Description: Key Points: Ice concentrations several orders of magnitude higher than ice nucleating particle concentrations were observed. Secondary ice production was believed to be responsible for the observed high ice number concentrations. Comparison with climate model indicated that secondary ice processes are still inadequately represented in the model.
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: U.S. Department of Energy http://dx.doi.org/10.13039/100000015
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: NSF Polar Programs
    Keywords: ddc:551 ; southern ocean ; mixed‐phase clouds ; in‐situ observations ; ice crystals ; secondary ice ; ice nucleating particles
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 16 (1986), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: SUMMARY. 1. Colonization of microhabitat implants by the amphipod Gammarus pseudolimmnaeus in a small southern Ontario stream was studied in order to analyses the factors controlling habitat selection. The variables substrate particle size, current speed, presence of food and light were used in an analysis of covariance, with percentage weight of organic matter of silt and percentage interstitial space occluded by silt as the covariates.2. Greatest numbers of amphipods settled on microhabitats featuring large substrate particles, no current and presence of food. There was also a positive relationship between total numbers and the volume of silt deposited on the microhabitats by the stream; small quantities of silt had a beneficial effect on colonization but larger quantities became detrimental.3. The change from a positive effect occurred at approximately 25% occlusion of the interstitial space in large gravel (x̄ diameter=3.2 cm) and at approximately 55% occlusion in small gravel (x̄ diameter = 0.34 cm).4. Large animals (6–16.0 mm long) were found predominantly in microhabitats featuring food and large substrate. Medium-sized animals (3–6.0 mm) were most commonly associated with no current and presence of food, and were positively affected by the amount of silt but, at the same time, were negatively affected by increasing occlusion of interstitial spaces by silt. Numbers of small Gammarus (〈3.0 mm) were affected only by silt and in a similar manner to medium-sized animals.5. Amphipod biomass was greatest in microhabitats featuring food and no current. Previous data on the behaviour of this species in laboratory stream-tanks are compared with the microhabitat selections seen.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 96 (1982), S. 137-147 
    ISSN: 1573-5117
    Keywords: Gammarus pseudolimnaeus ; benthos ; activity ; substrate size ; current ; fish predation ; acid water ; sodium chloride
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Various environmental parameters which may affect the activity ofGammarus pseudolimnaeus were examined in the laboratory. The animals' responses were monitored automatically using an ultraviolet beam interruption technique. The basic diel activity pattern in the fall showed high rates of drifting at night but in the summer showed uniform drift throughout the light/dark cycle. Upstream activity was greater in the summer when it compensated approximately 11% of the number of animals drifting downstream. A large-sized gravel substrate (31.5 mm diameter) produced significantly lower night-time drift than either a medium-sized gravel (11.0 mm diameter) or a small-sized gravel (3.4 mm diameter). Animals drifted more at current speeds of 5 to 15 cm/s than at 20 to 25 cm/s. The introduction of rainbow trout to the tanks in the day or night caused almost total cessation of drift and upstream activity within minutes. Trials with fish water suggested that the amphipods detect some form of labile exudate produced by the fishes. Additions of toxicants, in the form of sulphuric acid and NaCl, produced changes in activity levels before lethal concentrations were reached.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-27
    Description: Multiple peaks in sulfate concentration in ice cores have been identified as potential candidates for the ~74 ka Toba supereruption. The sulfur isotopic composition of sulfate preserved in two EPICA Antarctic ice cores, EDML and EDC, for 11 of the candidates has been analysed at high temporal resolution for mass-independent fractionation (MIF) using multi-collector inductively coupled plasma mass spectrometry. S-MIF signals preserved in volcanic sulfate are indicative of stratospheric eruptions due to sulfur aerosols being exposed to ultraviolet radiation when erupted into and above the ozone layer and subsequently undergoing photochemical reactions. Sulfur aerosols in the stratosphere will have longer residence times than those in the troposphere and will scatter incoming solar radiation. This data set includes the eruption, sample type, depths, ages (using the AICC2012 age model), sulfate concentration (determined by ion chromatography) and isotopic composition data (δ34S, δ33S, Δ33S) and their associated errors.
    Keywords: AGE; Antarctica; Calculated, in volcanic fraction; DEPTH, ice/snow; Dome C; Dome C, Antarctica; EDC; EDML; EDRILL; EPICA; EPICA-Campaigns; EPICA Dome C; EPICA drill; EPICA Dronning Maud Land, DML28C01_00; Eruption; European Project for Ice Coring in Antarctica; Event label; Ice core; ICEDRILL; Ice drill; Ion chromatography; Kohnen Station; Multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS); sulfate; Sulfate; Sulfur isotopes; Type; volcanic; Volcanic fraction; Volcanic fraction, standard deviation; Δ33S; Δ33S, standard deviation; δ33S; δ33S, standard deviation; δ34S; δ34S, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 1440 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: Sea spray aerosol (SSA) is a globally important source of particulate matter. A mesocosm study was performed to determine the relative enrichment of saccharides and inorganic ions in nascent fine (PM2.5) and coarse (PM10–2.5) SSA and the sea surface microlayer (SSML) relative to bulk seawater. Saccharides comprise a significant fraction of organic matter in fine and coarse SSA (11 and 27%, respectively). Relative to sodium, individual saccharides were enriched 14–1314-fold in fine SSA, 3–138-fold in coarse SSA, but only up to 1.0–16.2-fold in SSML. Enrichments in SSML were attributed to rising bubbles that scavenge surface-active species from seawater, while further enrichment in fine SSA likely derives from bubble films. Mean enrichment factors for major ions demonstrated significant enrichment in fine SSA for potassium (1.3), magnesium (1.4), and calcium (1.7), likely because of their interactions with organic matter. Consequently, fine SSA develops a salt profile significantly different from that of seawater. Maximal enrichments of saccharides and ions coincided with the second of two phytoplankton blooms, signifying the influence of ocean biology on selective mass transfer across the ocean–air interface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The goal of the Sea2Cloud project is to study the interplay between surface ocean biogeochemical and physical properties, fluxes to the atmosphere, and ultimately their impact on cloud formation under minimal direct anthropogenic influence. Here we present an interdisciplinary approach, combining atmospheric physics and chemistry with marine biogeochemistry, during a voyage between 41 degrees and 47 degrees S in March 2020. In parallel to ambient measurements of atmospheric composition and seawater biogeochemical properties, we describe semicontrolled experiments to characterize nascent sea spray properties and nucleation from gas-phase biogenic emissions. The experimental framework for studying the impact of the predicted evolution of ozone concentration in the Southern Hemisphere is also detailed. After describing the experimental strategy, we present the oceanic and meteorological context including provisional results on atmospheric thermodynamics, composition, and flux measurements. In situ measurements and flux studies were carried out on different biological communities by sampling surface seawater from subantarctic, subtropical, and frontal water masses. Air-Sea-Interface Tanks (ASIT) were used to quantify biogenic emissions of trace gases under realistic environmental conditions, with nucleation observed in association with biogenic seawater emissions. Sea spray continuously generated produced sea spray fluxes of 34% of organic matter by mass, of which 4% particles had fluorescent properties, and which size distribution resembled the one found in clean sectors of the Southern Ocean. The goal of Sea2Cloud is to generate realistic parameterizations of emission flux dependences of trace gases and nucleation precursors, sea spray, cloud condensation nuclei, and ice nuclei using seawater biogeochemistry, for implementation in regional atmospheric models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...