GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :American Geophysical Union,
    Keywords: Seawater -- Thermodynamics -- Mathematical models. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (295 pages)
    Edition: 1st ed.
    ISBN: 9781118672570
    Series Statement: Geophysical Monograph Series ; v.178
    Language: English
    Note: Intro -- Title Page -- Contents -- Preface -- Modeling Hydrothermal Processes at Ocean Spreading Centers: Magma to Microbe-An Overview -- Modeling Multiphase, Multicomponent Processes at Oceanic Spreading Centers -- The Supply of Heat to Mid-Ocean Ridges by Crystallization and Cooling of Mantle Melts -- Seismological Constraints on Magmatic and Hydrothermal Processes at Mid-Ocean Ridges -- Modeling Hydrothermal Response to Earthquakes at Oceanic Spreading Centers -- The Chemistry of Diffuse-Flow Vent Fluids on the Galapagos Rift -- Hydrothermal Fluid Composition at Middle Valley, Northern Juan de Fuca Ridge: Temporal and Spatial Variability -- Reactive Transport and Numerical Modeling of Seafloor Hydrothermal Systems: A Review -- Observational, Experimental, and Theoretical Constraints on Carbon Cycling in Mid-Ocean Ridge Hydrothermal Systems -- Modeling the Impact of Diffuse Vent Microorganisms Along Mid-Ocean Ridges and Flanks -- Magma-to-Microbe Networks in the Context of Sulfide Hosted Microbial Ecosystems -- Processes and Interactions in Macrofaunal Assemblages at Hydrothermal Vents: A Modeling Perspective -- The Role of Seafloor Hydrothermal Systems in the Evolution of Seawater CompositionDuring the Phanerozoic -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift ; Korallen ; Tiefsee
    Type of Medium: Online Resource
    Pages: Online-Ressource (109 Seiten = 16 MB) , Illustrationen, Diagramme, Karten
    DDC: 590
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Hydrothermal circulation (Oceanography) Mathematical models ; Seawater Thermodynamics ; Mathematical models ; Hydrothermal vents Microbiology ; Mid-ocean ridges ; Sea-floor spreading ; Aufsatzsammlung ; Seafloor spreading ; Meeresgeologie ; Hydrothermalquelle ; Meeresboden ; Schwarzer Raucher ; Mittelozeanischer Rücken ; Fluid ; Geochemie ; Ozeanische Erdkruste ; Hydrothermalgebiet ; Ozeanische Erdkruste ; Stoffübertragung ; Wärmeübertragung ; Aufsatzsammlung ; Mittelozeanischer Rücken ; Hydrothermalquelle ; Hydrogeothermik ; Mikroorganismus ; Modellierung
    Type of Medium: Book
    Pages: viii, 285 Seiten , Illustrationen
    ISBN: 9780875904436
    Series Statement: Geophysical Monograph 178
    DDC: 551.1/36
    RVK:
    Language: English
    Note: Includes bibliographical references and index
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 381 (1996), S. 514-516 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Lamellibrachia sp. and Escarpia sp. (Fig. 1) were collected by manned submersible and dissected immediately. Details of the culture methods are given in the figure legends; developmental descriptions apply to both species unless stated. Eggs are optically dense and positively buoyant, those of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-9710
    Keywords: bathymetric range ; biodiversity ; biogeographic range ; developmental mode ; larval dispersal ; lecithotrophy vs. planktotrophy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Dispersal plays an important role in the establishment and maintenance of biodiversity and, for most deep-sea benthic marine invertebrates, it occurs mainly during the larval stages. Therefore, the mode of reproduction (and thus dispersal ability) will affect greatly the biogeographic and bathymetric distributions of deep-sea organisms. We tested the hypothesis that, for bathyal and abyssal echinoderms and ascidians of the Atlantic Ocean, species with planktotrophic larval development have broader biogeographic and bathymetric ranges than species with lecithotrophic development. In comparing two groups with lecithotrophic development, we found that ascidians, which probably have a shorter larval period and therefore less dispersal potential, were present in fewer geographic regions than elasipod holothurians, which are likely to have longer larval periods. For asteroids and echinoids, both the geographic and bathymetric ranges were greater for lecithotrophic than for planktotrophic species. For these two classes, the relationships of egg diameter with geographic and bathymetric range were either linearly increasing or non-monotonic. We conclude that lecithotrophic development does not necessarily constrain dispersal in the deep sea, probably because species with planktotrophic development may be confined to regions of high detrital input from the sea surface. Our data suggest that more information is necessary on lengths of larval period for different species to accurately assess dispersal in the deep sea.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 137 . pp. 420-435.
    Publication Date: 2020-02-06
    Description: Over the past 15 years, multiple areas in the North Atlantic have been closed to destructive fishing practices to protect vulnerable deep-water coral ecosystems, known to provide habitat for diverse associated fauna. Despite the growing number of conservation measures, long-term studies on the recovery of deep-water coral communities from fisheries impacts remain scarce. In the Gulf of Maine, the Northeast Channel Coral Conservation Area (NECCCA)1 was established in 2002 to protect dense aggregations of the two numerically dominant octocoral species in the region, Primnoa resedaeformis and Paragorgia arborea. To evaluate the effectiveness of the conservation measures, we monitored shifts in abundance and size of these two coral species in the shallow section (400–700 m) of the NECCCA for 12 years after the fisheries closure. We also evaluated the appropriateness of the location of the deep boundaries of the NECCCA that were placed based on a precautionary approach with limited information on coral distribution at depths 〉500 m. Video transects were conducted with ROV “ROPOS” in 2001, 2006, 2010 and 2014. We found potential signs of recovery from fisheries impact at some of the shallow locations in 2014: higher coral abundance and the presence of some very large colonies as well as recruits compared to 2001 and 2006. However, spatial heterogeneity was pronounced and small colonies (〈20 cm) indicative of successful recruitment were not found at all sites, underscoring the need for long-term protection measures to allow full recovery of impacted coral communities. At 700–1500 m different coral taxa were dominant than at the shallow locations and coral abundance peaked between 700 and1200 m. High abundance and diversity of corals at this depth range, 8–10 km southwest of the NECCCA, suggest that an extension of the southwest boundary should be considered. Comparably low coral abundance was found at depths of 1200–1500 m inside the NECCCA indicating an appropriate initial placement of the southeast boundary. These are the first long-term observations of protected deep-water octocoral communities which are needed for the effective management of deep-water coral conservation areas.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-02-01
    Description: Growth rates of deep-water corals provide important information on the recovery potential of these ecosystems, for example from fisheries-induced impacts. Here, we present in situ growth dynamics that are currently largely unknown for deep-water octocorals, calculated by applying a non-destructive method. Videos of a boulder harbouring multiple colonies of Paragorgia arborea and Primnoa resedaeformis in the Northeast Channel Coral Conservation Area at the entrance to the Gulf of Maine at 863 m depth were collected in 2006, 2010 and 2014. Photogrammetric reconstructions of the boulder and the fauna yielded georeferenced 3D models for all sampling years. Repeated measurements of total length and cross-sectional area of the same colonies allowed the observation of growth dynamics. Growth rates of total length of Paragorgia arborea decreased over time with higher rates between 2006 and 2010 than between 2010 and 2014, while growth rates of cross-sectional area remained comparatively constant. A general trend of decreasing growth rates of total length with size of the coral colony was documented. While no growth was observed for the largest colony (165 cm in length) between 2010 and 2014, a colony 50–65 cm in length grew 3.7 cm yr−1 between 2006 and 2010. Minimum growth rates of 1.6–2.7 cm yr−1 were estimated for two recruits (〈23 cm in 2014) of Primnoa resedaeformis. We successfully extracted biologically meaningful data from photogrammetric models and present the first in situ growth rates for these coral species in the Northwest Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-07
    Description: Highlights: • Mid-Atlantic vent mussel populations are contemporarily isolated • Population connectivity can only be maintained in a stepwise manner • Four mussel lineages exist on the Mid-Atlantic Ridge • Recolonization of perturbed vent localities is uncertain Summary: Deep-sea hydrothermal vents are patchily distributed ecosystems inhabited by specialized animal populations that are textbook meta-populations. Many vent-associated species have free-swimming, dispersive larvae that can establish connections between remote populations. However, connectivity patterns among hydrothermal vents are still poorly understood because the deep sea is undersampled, the molecular tools used to date are of limited resolution, and larval dispersal is difficult to measure directly. A better knowledge of connectivity is urgently needed to develop sound environmental management plans for deep-sea mining. Here, we investigated larval dispersal and contemporary connectivity of ecologically important vent mussels (Bathymodiolus spp.) from the Mid-Atlantic Ridge by using high-resolution ocean modeling and population genetic methods. Even when assuming a long pelagic larval duration, our physical model of larval drift suggested that arrival at localities more than 150 km from the source site is unlikely and that dispersal between populations requires intermediate habitats (“phantom” stepping stones). Dispersal patterns showed strong spatiotemporal variability, making predictions of population connectivity challenging. The assumption that mussel populations are only connected via additional stepping stones was supported by contemporary migration rates based on neutral genetic markers. Analyses of population structure confirmed the presence of two southern and two hybridizing northern mussel lineages that exhibited a substantial, though incomplete, genetic differentiation. Our study provides insights into how vent animals can disperse between widely separated vent habitats and shows that recolonization of perturbed vent sites will be subject to chance events, unless connectivity is explicitly considered in the selection of conservation areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 124 . pp. 55-65.
    Publication Date: 2020-02-06
    Description: Species distribution modelling can be applied to identify potentially suitable habitat for species with largely unknown distributions, such as many deep-water corals. Important variables influencing species occurrence in the deep sea, e.g. substrate composition, are often not included in these modelling approaches because high-resolution data are unavailable. We investigated the relationship between substrate composition and the occurrence of the two deep-water octocoral species Primnoa resedaeformis and Paragorgia arborea, which require hard substrate for attachment. On a scale of 10s of metres, we analysed images of the seafloor taken at two locations inside the Northeast Channel Coral Conservation Area in the Northwest Atlantic. We interpolated substrate composition over the sampling areas and determined the contribution of substrate classes, depth and slope to describe habitat suitability using maximum entropy modelling (Maxent). Substrate composition was similar at both sites - dominated by pebbles in a matrix of sand (〉80%) with low percentages of suitable substrate for coral occurrence. Coral abundance was low at site 1 (0.9 colonies of P. resedaeformis per 100m2) and high at site 2 (63 colonies of P. resedaeformis per 100m2) indicating that substrate alone is not sufficient to explain varying patterns in coral occurrence. Spatial interpolations of substrate classes revealed the difficulty to accurately resolve sparsely distributed boulders (3-5% of substrate). Boulders were by far the most important variable in the habitat suitability model (HSM) for P. resedaeformis at site 1, indicating the fundamental influence of a substrate class that is the least abundant. At site 2, HSMs identified cobbles and sand/pebble as the most important variables for habitat suitability. However, substrate classes were correlated making it difficult to determine the influence of individual variables. To provide accurate information on habitat suitability for the two coral species, substrate composition needs to be quantified so that small fractions (〈20% contribution of certain substrate class) of suitable substrate are resolved. While the collection and analysis of high-resolution data is costly and spatially limited, the required resolution is unlikely to be achieved in coarse-scale interpolations of substrate data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: A comprehensive understanding of the deep-sea environment and mining’s likely impacts is necessary to assess whether and under what conditions deep-seabed mining operations comply with the International Seabed Authority’s obligations to prevent ‘serious harm’ and ensure the ‘effective protection of the marine environment from harmful effects’ in accordance with the United Nations Convention on the Law of the Sea. A synthesis of the peer-reviewed literature and consultations with deep-seabed mining stakeholders revealed that, despite an increase in deep-sea research, there are few categories of publicly available scientific knowledge comprehensive enough to enable evidence-based decision-making regarding environmental management, including whether to proceed with mining in regions where exploration contracts have been granted by the International Seabed Authority. Further information on deep-sea environmental baselines and mining impacts is critical for this emerging industry. Closing the scientific gaps related to deep-seabed mining is a monumental task that is essential to fulfilling the overarching obligation to prevent serious harm and ensure effective protection, and will require clear direction, substantial resources, and robust coordination and collaboration. Based on the information gathered, we propose a potential high-level road map of activities that could stimulate a much-needed discussion on the steps that should be taken to close key scientific gaps before any exploitation is considered. These steps include the definition of environmental goals and objectives, the establishment of an international research agenda to generate new deep-sea environmental, biological, and ecological information, and the synthesis of data that already exist.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...