GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (205 pages)
    Edition: 1st ed.
    ISBN: 9783642735370
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Bacterial cell surfaces. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (245 pages)
    Edition: 1st ed.
    ISBN: 9780080548418
    Series Statement: Biotechnology Intelligence Unit Series
    DDC: 589.9/47
    Language: English
    Note: Front Cover -- Crystalline Bacterial Cell Surface Proteins -- Copyright Page -- Contents -- Chapter 1. Introduction -- Chapter 2. Occurrence, Location, Ultrastructure and Morphogenesis of S-Layers -- 2.1. Introduction -- 2.2. Occurrence and Location of S-layers on Bacterial Cell Envelopes -- 2.3. Ultrastructure of S-layers -- 2.4. Morphogenesis of S-layers -- 2.5. Conclusions -- Chapter 3. Chemical Composition and Biosynthesis of S-Layers -- 3.1. Introduction -- 3.2. Non-Glycosylated S-Layer Proteins -- 3.3. Glycosylated S-Layer Proteins -- 3.4. Conclusions -- Chapter 4. Analysis of S-Layer Proteins and Genes -- 4.1. Introduction -- 4.2. Promoter Structures of S-Layer Genes -- 4.3. Secretion of S-Layer Proteins -- 4.4. Protein Homology Studies Among Different S-Layer Proteins and Related Proteins -- 4.5. S-Layer Protein Variations -- 4.6. S-Layer Domains -- 4.7. Recombinant S-Layer Genes and Molecular Biotechnology -- Chapter 5. Functional Aspects of S-Layers -- 5.1. Introduction -- 5.2. Specific Functions -- 5.3. General Functional Aspects -- 5.4. Conclusion -- Chapter 6. Biotechnological Applications of S-Layers -- 6.1. Introduction -- 6.2. S-Layer Ultrafiltration Membranes (SUMs) -- 6.3. Continuous Culture of S-Layer Carrying Organisms -- 6.4. S-Layers as Matrix for the Immobilization of Functional Macromolecules -- 6.5. S-Layer Coated Liposomes -- 6.6. Conclusion -- Chapter 7. Vaccine Development Based on S-Layer Technology -- 7.1. Introduction -- 7.2. S-Layers as a Fish Vaccine -- 7.3. S-Layers as Carrier/Adjuvant for Vaccination and Immunotherapy -- 7.4. Conclusions -- Chapter 8. Molecular Nanotechnology and Biomimetics with S-Layers -- 8.1. Introduction -- 8.2. Formation of S-Layer Lattices on Solid Substrates and Liquid Surface Interfaces -- 8.3. S-Layers as Patterning Structures and Nanonatural Resists in Molecular Nanotechnology. , 8.4. Biomimetic Applications -- 8.5. Conclusion -- Appendix: Crystalline Surface Layers on Eubacteria and Archaeobacteria -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 745 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pseudomonas aeruginosa is an opportunistic pathogen capable of producing a wide variety of virulence factors, including extracellular rhamnolipids and lipopolysaccharide. Rhamnolipids are tenso-active glycolipids containing one (mono-rhamnolipid) or two (di-rhamnolipid) l-rhamnose molecules. Rhamnosyltransferase 1 (RhlAB) catalyses the synthesis of mono-rhamnolipid from dTDP-l-rhamnose and β-hydroxydecanoyl-β-hydroxydecanoate, whereas di-rhamnolipid is produced from mono-rhamnolipid and dTDP-l-rhamnose. We report here the molecular characterization of rhlC, a gene encoding the rhamnosyltransferase involved in di-rhamnolipid (l-rhamnose-l-rhamnose-β-hydroxydecanoyl-β-hydroxydecanoate) production in P. aeruginosa. RhlC is a protein consisting of 325 amino acids with a molecular mass of 35.9 kDa. It contains consensus motifs that are found in other glycosyltransferases involved in the transfer of l-rhamnose to nascent polymer chains. To verify the biological function of RhlC, a chromosomal mutant, RTII-2, was generated by insertional mutagenesis and allelic replacement. This mutant was unable to produce di-rhamnolipid, whereas mono-rhamnolipid was unaffected. In contrast, a null rhlA mutant (PAO1-rhlA) was incapable of producing both mono- and di-rhamnolipid. Complementation of mutant RTII-2 with plasmid pRTII-26 containing rhlC restored the level of di-rhamnolipid production in the recombinant to a level similar to that of the wild-type strain PAO1. The rhlC gene was located in an operon with an upstream gene (PA1131) of unknown function. A σ54-type promoter for the PA1131–rhlC operon was identified, and a single transcriptional start site was mapped. Expression of the PA1131–rhlC operon was dependent on the P. aeruginosa rhl quorum-sensing system, and a well-conserved lux box was identified in the promoter region. The genetic regulation of rhlC by RpoN and RhlR was in agreement with the observed increasing RhlC rhamnosyltransferase activity during the stationary phase of growth. This is the first report of a rhamnosyltransferase gene responsible for the biosynthesis of di-rhamnolipid.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 10 (1993), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Crystalline arrays of proteinaceous subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope structures. They are ubiquitous amongst Gram-positive and Gram-negative archaeobacteria and eubacteria and, if present, account for the major protein species produced by the cells. S-layers can provide organisms with a selection advantage by providing various functions including protective coats, molecular sieves, ion traps and structures involved in cell surface interactions. S-layers were identified as contributing to virulence when present as a structural component of pathogens. In Gram-negative archaeobacteria they are involved in determining cell shape and cell division. The crystalline arrays reveal a broad-application potential in biotechnology, vaccine development and molecular nanotechnology.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: dTDP-D-glucose 4,6-dehydratase (RmlB) is the second of four enzymes involved in the dTDP-L-rhamnose pathway and catalyzes the dehydration of dTDP-D-glucose to dTDP-4-keto-6-deoxy-D-glucose. The ultimate product of the pathway, dTDP-L-rhamnose, is the precursor of L-rhamnose, which is a key component of the cell wall of many pathogenic bacteria. RmlB from Salmonella enterica serovar Typhimurium has been overexpressed and purified, and crystals of the enzyme have been grown using the sitting-drop vapour-diffusion technique with lithium sulfate as precipitant. Diffraction data have been obtained to a resolution of 2.8 Å on a single frozen RmlB crystal which belongs to space group P21, with unit-cell parameters a = 111.85, b = 87.77, c = 145.66 Å, β = 131.53°. The asymmetric unit contains four monomers in the form of two RmlB dimers with a solvent content of 62%. A molecular-replacement solution has been obtained and the model is currently being refined.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: L-Rhamnose is an essential component of the cell wall of many pathogenic bacteria. Its precusor, dTDP-L-rhamnose, is synthesized from α-D-glucose-1-phosphate and dTTP via a pathway requiring four distinct enzymes: RmlA, RmlB, RmlC and RmlD. RmlC was overexpressed in Escherichia coli. The recombinant protein was purified by a two-step protocol involving anion-exchange and hydrophobic chromatography. Dynamic light-scattering experiments indicated that the recombinant protein is monodisperse. Crystals were obtained using the sitting-drop vapour-diffusion method with ammonium sulfate as precipitant. Diffraction data were collected on a frozen crystal to a resolution of 2.17 Å. The crystal belongs to either space group P3121 or P3221, with unit-cell parameters a = b = 71.56, c = 183.53 Å and α = β = 90, γ = 120°.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: L-Rhamnose is an essential component of the cell wall of many pathogenic bacteria. Its precursor, dTDP-L-rhamnose, is synthesized from α-D-glucose-1-phosphate and dTTP via a pathway requiring four distinct enzymes: RmlA, RmlB, RmlC and RmlD. RmlD catalyses the terminal step of this pathway by converting dTDP-6-deoxy-L-lyxo-4-hexulose to dTDP-L-rhamnose. RmlD from Salmonella enterica serovar Typhimurium has been overexpressed in Escherichia coli. The recombinant protein was purified by a two-step protocol involving anion-exchange and hydrophobic chromatography. Dynamic light-scattering experiments indicated that the recombinant protein is monodisperse. Crystals of native and selenomethionine-enriched RmlD have been obtained using the sitting-drop vapour-diffusion method with polyethylene glycol as precipitant. Diffraction data have been collected from orthorhombic crystals of both native and selenomethionyl-derivatized protein, allowing tracing of the protein structure.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The ∼93-kDa surface layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a forms a regular crystalline array providing a nanopatterned matrix for the future display of biologically relevant molecules. Lactococcus lactis NZ9000 was established as a safe expression host for the controlled targeted production of SgsE based on the broad host-range plasmid pNZ124Sph, into which the nisA promoter was introduced. SgsE devoid of its signal peptide-encoding sequence was cloned into the new vector and purified from the cytoplasm at a yield of 220 mg l− of expression culture. Secretion constructs were based on the signal peptide of the Lactobacillus brevis SlpA protein or the L. lactis Usp45 protein, allowing isolation of 95 mg of secreted rSgsE l−1. N-terminal sequencing confirmed correct processing of SgsE in L. lactis NZ9000. The ability of rSgsE to self-assemble in suspension and to recrystallize on solid supports was demonstrated by electron and atomic force microscopy.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 20 (1997), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: During evolution prokaryotes have developed different envelope structures exterior to the cell wall proper. Among these surface components are regularly arranged S-layers and capsules. The structural characterization and the detailed chemical analysis of these surface molecules is a prerequisite to understand their biosynthesis and functional role(s) at the molecular level. Of particular interest are the glycosylated S-layer proteins which belong to the first prokaryotic glycoproteins ever described. Their characterization was performed on strains belonging to the thermophilic Bacillaceae and included structural studies and experiments to learn about the pathways for the glycan biosynthesis of S-layer glycoproteins. As an example for non-glycosylated S-layer proteins those of Lactobacillus helveticus strains are described in detail. Recently, a novel type of bacterial glycoconjugate was observed in the cell envelope of the extremely halophilic archaeon Natronococcus occultus which consists of a glycosylated polyglutamyl polymer. Beside the conventional biochemical techniques for the analysis new sophisticated instrumental methods such as X-ray photoelectron spectroscopy and matrix-assisted laser desorption ionization or electrospray ionization mass spectrometry have been introduced for the analysis of the protein and glycan portions of these cell surface macromolecules.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...